Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Similar nonlinear mechanical responses in hard and soft materials

A comparison of the mechanical responses of (bio)polymer networks and shape-memory alloys to cyclic loading reveals strong phenomenological similarities resulting from strain-induced structural changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the ideal Mullins effect.
Figure 2: Mechanical responses to cyclic deformations for both biopolymer hydrogels and SMAs.
Figure 3: Strain-induced structural changes cause both the Mullins effect and cyclic hardening in both polymer hydrogels and SMAs.

References

  1. Mullins, L. Rubber Chem. Technol. 21, 281–300 (1948).

    Article  CAS  Google Scholar 

  2. Mullins, L. Rubber Chem. Technol. 42, 339–362 (1969).

    Article  CAS  Google Scholar 

  3. Diani, J., Fayolle, B. & Gilormini, P. Eur. Polym. J. 45, 601–612 (2009).

    Article  CAS  Google Scholar 

  4. Ogden, R. W. & Roxburgh, D. G. Proc. R. Soc. Lond. A 45, 2861–2878 (1999).

    Article  Google Scholar 

  5. Dorfmann, A. & Ogden, R. W. Int. J. Solids Struct. 40, 2699–2714 (2003).

    Article  Google Scholar 

  6. Dorfmann, A. & Ogden, R. W. Int. J. Solids Struct. 41, 1855–1878 (2004).

    Article  Google Scholar 

  7. Govindjee, S. & Simo, J. J. Mech. Phys. Solids 39, 87–112 (1991).

    Article  Google Scholar 

  8. Marckmann, G. et al. J. Mech. Phys. Solids 50, 2011–2028 (2002).

    Article  CAS  Google Scholar 

  9. Webber, R. E., Creton, C., Brown, H. R. & Gong, J. P. Macromolecules 40, 2919–2927 (2007).

    Article  CAS  Google Scholar 

  10. Sun, J-Y. et al. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  11. Nakajima, T., Kurokawa, T., Ahmed, S., Wu, W-I. & Gong, J. P. Soft Matter 9, 1955–1966 (2013).

    Article  CAS  Google Scholar 

  12. Schmoller, K. M., Fernández, P., Arevalo, R. C., Blair, D. L. & Bausch, A. R. Nature Commun. 1, 134 (2010).

    Article  CAS  Google Scholar 

  13. Puértolas, J. A. et al. J. Mater. Sci. Mater. Med. 23, 229–238 (2012).

    Article  Google Scholar 

  14. Wagenseil, J. E., Wakatsuki, T., Okamoto, R. J., Zahalak, G. I. & Elson, E. L. J. Biomech. Eng. 125, 719–725 (2003).

    Article  Google Scholar 

  15. Munoz, M. J. et al. J. Biomech. 41, 93–99 (2008).

    Article  CAS  Google Scholar 

  16. Peña, E., Peña, J. A. & Doblaré, M. Int. J. Solids Struct. 46, 1727–1735 (2009).

    Article  Google Scholar 

  17. Weisbecker, H., Pierce, P., Regitnig, D. M. & Holzapfel, G. A. J. Mech. Behav. Biomed. 12, 93–106 (2012).

    Article  Google Scholar 

  18. Rubod, C. et al. Int. Urogynecol. J. 19, 811–816 (2008).

    Article  Google Scholar 

  19. Peña, E. et al. J. Mech. Behav. Biomed. 4, 275–283 (2011).

    Article  Google Scholar 

  20. Bellucci, G. & Seedhom, B. B. Rheumatology 40, 1337–1345 (2001).

    Article  CAS  Google Scholar 

  21. Fernández, P., Heymann, L., Ott, A., Aksel, N. & Pullarkat, P. A. New J. Phys. 9, 419 (2007).

    Article  Google Scholar 

  22. Franceschini, G., Bigoni, D., Regitnig, P. & Holzapfel, G. A. J. Mech. Phys. Solids 54, 2592–2620 (2006).

    Article  Google Scholar 

  23. Miehe, C. Eur. J. Mech. A 14, 697–720 (1995).

    Google Scholar 

  24. Wang, X. & Hong, W. Soft Matter 7, 8576–8581 (2011).

    Article  CAS  Google Scholar 

  25. Wolff, L., Fernandez, P. & Kroy, K. New J. Phys. 12, 053024 (2010).

    Article  Google Scholar 

  26. Schmoller, K. M., Lieleg, O. & Bausch, A. R. Soft Matter 4, 2365–2367 (2008).

    Article  CAS  Google Scholar 

  27. Falzone, T. T., Lenz, M., Kovar, D. R. & Gardel, M. L. Nature Commun. 3, 861 (2012).

    Article  Google Scholar 

  28. Huo, Y. & Müller, I. Continuum Mech. Thermodyn. 5, 163–204 (1993).

    Article  Google Scholar 

  29. Kumar, P. K. & Lagoudas, D. C. Shape Memory Alloys Vol. 1 (ed. Lagoudas, D. C) 1–51 (Springer, 2008).

  30. Miyazaki, S., Imai, T., Igo, Y. & Otsuka, K. Metall. Trans. A 17A, 115–150 (1986).

    Article  CAS  Google Scholar 

  31. Lim, T. J. & McDowell, D. L. J. Intel. Mater. Syst. Str. 6, 817–830 (1995).

    Article  CAS  Google Scholar 

  32. Tahara, M., Kim, H. Y., Hosoda, H. & Miyazaki, S. Acta Mater. 57, 2461–2469 (2009).

    Article  CAS  Google Scholar 

  33. Ma, J., Karaman, I. & Chumlyakov, Y. I. Scripta Mater. 63, 265–268 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. F. Wassermann and M. J. Unterberger for helpful discussions. Financial support from the Deutsche Forschungsgemeinschaft in the framework of the SFB 863, and the German Excellence Initiative via the program Nanosystems Initiative Munich (NIM) is gratefully acknowledged. K.M.S. thanks Jan Skotheim for hospitality, and acknowledges financial support from CompInt in the framework of the ENB Bayern and the International Graduate School of Science and Engineering at the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kurt M. Schmoller or Andreas R. Bausch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmoller, K., Bausch, A. Similar nonlinear mechanical responses in hard and soft materials. Nature Mater 12, 278–281 (2013). https://doi.org/10.1038/nmat3603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3603

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research