Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptive fluid-infused porous films with tunable transparency and wettability

Abstract

Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported1,2,3. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores, causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film’s transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design of liquid-infused dynamic materials.
Figure 2: Adaptive optical transmission of the liquid-infused material under mechanical stretch.
Figure 3: Dynamic control of droplet mobility.
Figure 4: Effect of different deformation mechanisms.

References

  1. 1

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  2. 2

    Xia, F. & Jiang, L. Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Kim, P., Zarzar, L. D., He, X. M., Grinthal, A. & Aizenberg, J. Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials. Curr. Opin. Solid State Mater. Sci. 15, 236–245 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Huang, Y. F. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech. 2, 770–774 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008).

    Article  Google Scholar 

  7. 7

    Poetes, R., Holtzmann, K., Franze, K. & Steiner, U. Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105, 166104 (2010).

    Article  Google Scholar 

  8. 8

    Arzt, E., Gorb, S. & Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl Acad. Sci. USA 100, 10603–10606 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Qu, L. T., Dai, L. M., Stone, M., Xia, Z. H. & Wang, Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Hochbaum, A. I. & Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett. 10, 3717–3721 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Duprat, C., Protiere, S., Beebe, A. Y. & Stone, H. A. Wetting of flexible fibre arrays. Nature 482, 510–513 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Zheng, Y. M. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Bettinger, C. J., Langer, R. & Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Edn 48, 5406–5415 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Bocquet, L. & Lauga, E. A smooth future? Nature Mater. 10, 334–337 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Braun, R. J. Dynamics of the tear film. Ann. Rev. Fluid Mech. 44, 267–297 (2012).

    Article  Google Scholar 

  16. 16

    Thornton, D. J. & Sheehan, J. K. From mucins to mucus: Toward a more coherent understanding of this essential barrier. Proc. Am. Thorac. Soc. 1, 54–61 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Mathger, L. M., Denton, E. J., Marshall, N. J. & Hanlon, R. T. Mechanisms and behavioural functions of structural coloration in cephalopods. J. R. Soc. Interface 6, S149–S163 (2009).

    Article  Google Scholar 

  19. 19

    Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Lafuma, A. & Quéré, D. Slippery pre-suffused surfaces. Europhys. Lett. 96, 56001 (2011).

    Article  Google Scholar 

  21. 21

    Kim, P. et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Quéré, D. Non-sticking drops. Rep. Prog. Phys. 68, 2495–2532 (2005).

    Article  Google Scholar 

  24. 24

    Seemann, R. et al. Wetting morphologies and their transitions in grooved substrates. J. Phys. Condens. Matter 23, 184108 (2011).

    Article  Google Scholar 

  25. 25

    Scherer, G. W. & Smith, D. M. Cavitation during drying of a gel. J. Non-Cryst. Solids 189, 197–211 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Rice, J. R. & Cleary, M. P. Some basic stress diffusion solutions for fluid-saturated elastic porous-media with compressible constituents. Rev. Geophys. 14, 227–241 (1976).

    Article  Google Scholar 

  27. 27

    Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Article  Google Scholar 

  28. 28

    Yao, X., Gao, J., Song, Y. L. & Jiang, L. Superoleophobic surfaces with controllable oil adhesion and their application in oil transportation. Adv. Funct. Mater. 21, 4270–4276 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Grigoryey, A., Tokarey, T., Kornev, K. G., Luzinov, I. & Minko, S. Superomniphobic magnetic microtextures with remote wetting control. J. Am. Chem. Soc. 134, 12916–12919 (2012).

    Article  Google Scholar 

  30. 30

    Choi, W. et al. Fabrics with tunable oleophobicity. Adv. Mater. 21, 2190–2195 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Callies, M. & Quéré, D. On water repellency. Soft Matter 1, 55–61 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Smith, J. D. et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the AFOSR MURI award FA9550-09-1-0669-DOD35CAP (optical properties) and the ONR MURI award N00014-12-1-0875 (wetting properties). We thank T. Blough for the help in stretcher design and fabrication. We also thank M. Kolle and J. Alvarenga for the help with the optical test. We acknowledge the use of the facilities at the Harvard Center for Nanoscale Systems supported by the NSF under award ECS-0335765.

Author information

Affiliations

Authors

Contributions

X.Y. and J.A. conceived the concepts of the research. J.A. supervised the research. X.Y. designed and performed the experiments. X.Y. and T-S.W. prepared samples. Y.H. and L.M. set up models. Y.H. carried out finite-element simulations. X.Y., A.G., Y.H. and J.A. wrote the manuscript. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2671 kb)

Supplementary Information

Supplementary Movie S1 (WMV 2157 kb)

Supplementary Information

Supplementary Movie S2 (AVI 5075 kb)

Supplementary Information

Supplementary Movie S3 (AVI 2261 kb)

Supplementary Information

Supplementary Movie S4 (WMV 7503 kb)

Supplementary Information

Supplementary Movie S5 (WMV 2655 kb)

Supplementary Information

Supplementary Movie S6 (WMV 3615 kb)

Supplementary Information

Supplementary Movie S7 (WMV 6184 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, X., Hu, Y., Grinthal, A. et al. Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Mater 12, 529–534 (2013). https://doi.org/10.1038/nmat3598

Download citation

Further reading

Search

Quick links