Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays


Arrays of ligand-stabilized colloidal nanocrystals with size-tunable electronic structure are promising alternatives to single-crystal semiconductors in electronic, optoelectronic and energy-related applications1,2,3,4,5. Hard/soft interfaces in these nanocrystal arrays (NCAs) create a complex and uncharted vibrational landscape for thermal energy transport that will influence their technological feasibility. Here, we present thermal conductivity measurements of NCAs (CdSe, PbS, PbSe, PbTe, Fe3O4 and Au) and reveal that energy transport is mediated by the density and chemistry of the organic/inorganic interfaces, and the volume fractions of nanocrystal cores and surface ligands. NCA thermal conductivities are controllable within the range 0.1–0.3 W m−1 K−1, and only weakly depend on the thermal conductivity of the inorganic core material. This range is 1,000 times lower than the thermal conductivity of silicon, presenting challenges for heat dissipation in NCA-based electronics and photonics. It is, however, 10 times smaller than that of Bi2Te3, which is advantageous for NCA-based thermoelectric materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and heat capacity of NCA films.
Figure 2: vDOS of a 2.8-nm-diameter Au nanocrystal and its individual constituents (Au core and a dodecanethiol ligand) predicted from lattice dynamics calculations.
Figure 3: Effects of NCA geometry and temperature on thermal conductivity.
Figure 4: Effects of NCA chemistry on thermal conductivity.


  1. 1

    Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Talapin, D. V., Lee, J-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Briseno, A. L. & Yang, P. Optoelectronics: Combining chemical worlds. Nature Mater. 8, 7–8 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Coe, S., Woo, W-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Lee, J-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nature Mater. 11, 502–506 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Höhne, G. W. H., Hemminger, W. F. & Flammersheim, H-J. Differential Scanning Calorimetry 2nd edn (Springer, 2003).

    Google Scholar 

  11. 11

    Terrill, R. H. et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).

    Article  Google Scholar 

  13. 13

    Baroncini, C., Filippo, P., Latini, G. & Pacetti, M. Organic liquid thermal conductivity: A prediction method in the reduced temperature range 0.3 to 0.8. Int. J. Thermophys. 2, 21–38 (1981).

    CAS  Article  Google Scholar 

  14. 14

    Wang, J., Carson, J. K., North, M. F. & Cleland, D. J. A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Transfer 49, 3075–3083 (2006).

    Article  Google Scholar 

  15. 15

    Hasselman, D. P. H. & Johnson, L. F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987).

    Article  Google Scholar 

  16. 16

    Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Wang, R. Y., Segalman, R. A. & Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

    Article  Google Scholar 

  18. 18

    Minnich, A. & Chen, G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105 (2007).

    Article  Google Scholar 

  19. 19

    Cline, C. F., Dunegan, H. L. & Henderson, G. W. Elastic constants of hexagonal BeO, ZnS, and CdSe. J. Appl. Phys. 38, 1944–1948 (1967).

    CAS  Article  Google Scholar 

  20. 20

    Parkinson, D. H. & Quarrington, J. E. The molar heats of lead sulphide, selenide and telluride in the temperature range 20 K to 260 K. Proc. Phys. Soc. A 67, 569–579 (1954).

    Article  Google Scholar 

  21. 21

    Kouvel, J. Specific heat of a magnetite crystal at liquid helium temperatures. Phys. Rev. 102, 1489–1490 (1956).

    CAS  Article  Google Scholar 

  22. 22

    Luo, T. & Lloyd, J. R. Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au–SAM–Au junctions. J. Heat Transfer 132, 032401 (2010).

    Article  Google Scholar 

  23. 23

    Hopkins, P. E., Norris, P. M. & Stevens, R. J. Influence of inelastic scattering at metal-dielectric interfaces. J. Heat Transfer 130, 022401 (2008).

    Article  Google Scholar 

  24. 24

    Pei, Y-L. & Liu, Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. J. Alloys Comp. 514, 40–44 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Segal, D. & Nitzan, A. Heat rectification in molecular junctions. J. Chem. Phys. 122, 194704 (2005).

    Article  Google Scholar 

  26. 26

    Safarov, M. M. & Zaripova, M. A. Density dependence of heat conductivity of aqueous hydrazine solutions within wide ranges of temperature and pressure. J. Eng. Phys. Thermophys. 68, 390–394 (1996).

    Article  Google Scholar 

  27. 27

    Kovalenko, M. V., Bodnarchuk, M. I., Zaumseil, J., Lee, J-S. & Talapin, D. V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 132, 10085–10092 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5112 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Harikrishnan, S. & Kalaiselvam, S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochim. Acta 533, 46–55 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Hashin, Z. Assessment of the self consistent scheme approximation: Conductivity of particulate composites. J. Compos. Mater. 2, 284–300 (1968).

    Article  Google Scholar 

Download references


We thank M. V. Kovalenko, A. Ruditskiy and J. M. Kurley for the synthesis of CdSe nanocrystals, and S. Wyant and S. Majumdar for help in FDTR preparations. S.M.R. and D.V.T. acknowledge support from the II-VI Foundation and NSF CAREER Award (DMR-0847535). J.A.M. and W-L.O. acknowledge support from the AFOSR Young Investigator Program (FA95501110030) and the NSF CAREER Award (ENG-1149374). A.J.H.M. acknowledges support from the AFOSR Young Investigator Program (FA95501010098). This work used facilities supported by the NSF MRSEC Program under Award Number DMR-0213745 and the facilities at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357.

Author information




W-L.O. conducted the FDTR measurements on the NCAs, molecular dynamics simulations and lattice dynamics calculations. S.M.R. synthesized NCAs, conducted TGA, DSC and absorption spectra measurements, and took SEM, TEM and AFM images. W-L.O. and S.M.R. wrote the paper. D.V.T., A.J.H.M. and J.A.M. edited the paper. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Dmitri V. Talapin or Jonathan A. Malen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1634 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ong, W., Rupich, S., Talapin, D. et al. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nature Mater 12, 410–415 (2013).

Download citation

Further reading