Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

Abstract

Although cell–matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: hMSC matrix interactions and fate choice within photopolymerized MeHA hydrogels.
Figure 2: Sequential crosslinking characterization and proteolytic degradation kinetics of MeMaHA hydrogels.
Figure 3: MeMaHA hydrogel structure-dependent hMSC matrix interactions and fate choice.
Figure 4: Delayed secondary crosslinking redirects hMSC matrix interactions and fate choice without altering cell shape.
Figure 5: hMSC matrix interactions and lineage commitment following pharmacologically induced changes in cytoskeletal tension.

References

  1. Nuttelman, C. R., Tripodi, M. C. & Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 24, 208–218 (2005).

    CAS  Article  Google Scholar 

  2. Ruoslahti, E. & Reed, J. C. Anchorage dependence, integrins, and apoptosis. Cell 77, 477–478 (1994).

    CAS  Article  Google Scholar 

  3. VandeVondele, S., Vörös, J. & Hubbell, J. A. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82, 784–790 (2003).

    CAS  Article  Google Scholar 

  4. Docheva, D., Popov, C., Mutschler, W. & Schieker, M. Human mesenchymal stem cells in contact with their environment: Surface characteristics and the integrin system. J. Cell Mol. Med. 11, 21–38 (2007).

    CAS  Article  Google Scholar 

  5. Meredith, J. E. Jr, Fazeli, B. & Schwartz, M. A. The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    CAS  Article  Google Scholar 

  6. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    CAS  Article  Google Scholar 

  7. Reilly, G. C. & Engler, A. J. Intrinsic extracellular matrix properties regulate stem cell differentiation. 43, 55–62 (2010).

  8. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Article  Google Scholar 

  9. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Commun. 3, 792 (2012).

    Article  Google Scholar 

  10. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    CAS  Article  Google Scholar 

  11. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    CAS  Google Scholar 

  12. Guvendiren, M. & Burdick, J. A. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010).

    CAS  Article  Google Scholar 

  13. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    CAS  Article  Google Scholar 

  14. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  Article  Google Scholar 

  15. Ruiz, S. A. & Chen, C. S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921–2927 (2008).

    Article  Google Scholar 

  16. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Article  Google Scholar 

  17. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    CAS  Article  Google Scholar 

  18. Ferreira, L. S. et al. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28, 2706–2717 (2007).

    CAS  Article  Google Scholar 

  19. Ifkovits, J. L. & Burdick, J. A. Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007).

    CAS  Article  Google Scholar 

  20. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001).

    CAS  Article  Google Scholar 

  21. Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. 14, 149–165 (2008).

    CAS  Article  Google Scholar 

  22. Khetan, S., Katz, J. S. & Burdick, J. A. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5, 1601–1606 (2009).

    CAS  Article  Google Scholar 

  23. Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6, 386–391 (2005).

    CAS  Article  Google Scholar 

  24. Erickson, I. E. et al. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis Cartilage 17, 1639–1648 (2009).

    CAS  Article  Google Scholar 

  25. Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods 7, 969–971 (2010).

    CAS  Article  Google Scholar 

  26. Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).

    CAS  Article  Google Scholar 

  27. Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).

    CAS  Article  Google Scholar 

  28. West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999).

    CAS  Article  Google Scholar 

  29. Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31, 3736–3743 (2010).

    CAS  Article  Google Scholar 

  30. Marklein, R. A. & Burdick, J. A. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6, 136–143 (2010).

    CAS  Article  Google Scholar 

  31. Hudson, J. E. et al. A synthetic elastomer based on acrylated polypropylene glycol triol with tunable modulus for tissue engineering applications. Biomaterials 31, 7937–7947 (2010).

    CAS  Article  Google Scholar 

  32. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    CAS  Article  Google Scholar 

  33. Vardouli, L., Moustakas, A. & Stournaras, C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor- β. J. Biol. Chem. 280, 11448–11457 (2005).

    CAS  Article  Google Scholar 

  34. Shih, Y. R., Tseng, K. F., Lai, H. Y., Lin, C. H. & Lee, O. K. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J. Bone Miner. Res. 26, 730–738 (2011).

    CAS  Article  Google Scholar 

  35. Duxbury, M. S., Ashley, S. W. & Whang, E. E. Inhibition of pancreatic adenocarcinoma cellular invasiveness by blebbistatin: A novel myosin II inhibitor. Biochem. Biophys. Res. Commun. 313, 992–997 (2004).

    CAS  Article  Google Scholar 

  36. Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nature Cell Biol. 9, 299–309 (2007).

    CAS  Article  Google Scholar 

  37. Bennett, K. P. et al. Preoteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells. BMC Genom. 8, 380 (2007).

    Article  Google Scholar 

  38. Williams, C. G., Malik, A. N., Kim, T. K., Manson, P. N. & Elisseeff, J. H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26, 1211–1218 (2005).

    CAS  Article  Google Scholar 

  39. Singer, V. L., Jones, L. J., Yue, S. T. & Haugland, R. P. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249, 228–238 (1997).

    CAS  Article  Google Scholar 

  40. Gao, Y. & Kilfoil, M. L. Accurate detection and complete tracking of large populations of features in three dimensions. Opt. Express 17, 4685–4704 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from a Fellowship in Science and Engineering from the David and Lucile Packard Foundation (J.A.B.), a CAREER award (J.A.B.) and Graduate Research Fellowship (S.K.) from the National Science Foundation, and grant GM74048 from the National Institutes of Health (C.S.C.). The authors would like to thank R. Marklein and C. Choi for helpful discussions and experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and J.A.B. conceived the ideas and designed the experiments. S.K., M.G., W.R.L. and D.M.C. conducted the experiments and analysed the data. S.K., W.R.L., C.S.C. and J.A.B. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jason A. Burdick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2965 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khetan, S., Guvendiren, M., Legant, W. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater 12, 458–465 (2013). https://doi.org/10.1038/nmat3586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3586

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing