Review Article | Published:

Single spins in self-assembled quantum dots

Nature Materials volume 12, pages 483493 (2013) | Download Citation

Abstract

Self-assembled quantum dots have excellent photonic properties. For instance, a single quantum dot is a high-brightness, narrow-linewidth source of single photons. Furthermore, the environment of a single quantum dot can be tailored relatively easily using semiconductor heterostructure and post-growth processing techniques, enabling electrical control of the quantum dot charge and control over the photonic modes with which the quantum dot interacts. A single electron or hole trapped inside a quantum dot has spintronics applications. Although the spin dephasing is rather rapid, a single spin can be manipulated using optical techniques on subnanosecond timescales. Optical experiments are also providing new insights into old issues, such as the central spin problem. This Review provides a snapshot of this active field, with some indications for the future. It covers the basic materials and optical properties of single quantum dots, techniques for initializing, manipulating and reading out single spin qubits, and the mechanisms that limit the electron-spin and hole-spin coherence.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  2. 2.

    & Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 64, 125316 (2001).

  3. 3.

    et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

  4. 4.

    & Dealing with decoherence. Science 324, 1277–1278 (2009).

  5. 5.

    , , , & Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

  6. 6.

    et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

  7. 7.

    , & Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

  8. 8.

    , & Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50, 11687–11692 (1994).

  9. 9.

    et al. Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: Using theory to close the loop. Phys. Rev. B 80, 165425 (2009).

  10. 10.

    A close look on single quantum dots. J. Chem. Phys. 112, 7790–7798 (2000).

  11. 11.

    , , , & Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72, 3172–3174 (1998).

  12. 12.

    et al. Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004).

  13. 13.

    et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008).

  14. 14.

    & Optical transmission and reflection spectroscopy of single quantum dots. Superlattices and Microstructures 33, 311–337 (2003).

  15. 15.

    et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

  16. 16.

    et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004).

  17. 17.

    et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

  18. 18.

    , , & Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

  19. 19.

    , & Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

  20. 20.

    et al. Resonant saturation laser spectroscopy of a single self-assembled quantum dot. Physica E 40, 1994–1996 (2008).

  21. 21.

    et al. Rabi splitting and ac-Stark shift of a charged exciton. Appl. Phys. Lett. 92, 031108 (2008).

  22. 22.

    et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

  23. 23.

    et al. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett. 104, 017402 (2010).

  24. 24.

    et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

  25. 25.

    et al. Spin noise of electrons and holes in self-assembled quantum dots. Phys. Rev. Lett. 104, 036601 (2010).

  26. 26.

    , , , & Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994).

  27. 27.

    et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

  28. 28.

    et al. Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot. Phys. Rev. B 72, 195339 (2005).

  29. 29.

    et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

  30. 30.

    et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

  31. 31.

    et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

  32. 32.

    et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

  33. 33.

    et al. Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot. Appl. Phys. Lett. 94, 093113 (2009).

  34. 34.

    et al. Spin-selective optical absorption of singly charged excitons in a quantum dot. Appl. Phys. Lett. 86, 221905 (2005).

  35. 35.

    et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 97, 051111 (2010).

  36. 36.

    , & Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

  37. 37.

    et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

  38. 38.

    et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

  39. 39.

    , , & Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  40. 40.

    et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

  41. 41.

    et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

  42. 42.

    , , , & Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 703–709 (2011).

  43. 43.

    et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B 78, 075429 (2008).

  44. 44.

    et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

  45. 45.

    et al. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008).

  46. 46.

    et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

  47. 47.

    et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence. Phys. Rev. B 81, 035332 (2010).

  48. 48.

    et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

  49. 49.

    et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

  50. 50.

    et al. Optical detection of single-electron spin resonance in a quantum dot. Phys. Rev. Lett. 100, 156803 (2008).

  51. 51.

    Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 47, 460–465 (1957).

  52. 52.

    , & Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

  53. 53.

    , , & Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

  54. 54.

    , & Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

  55. 55.

    , & Electron spin decoherence in quantum dots due to interaction with n uclei. Phys. Rev. Lett. 88, 186802 (2002).

  56. 56.

    & Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

  57. 57.

    et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

  58. 58.

    et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

  59. 59.

    et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys. 5, 764–768 (2009).

  60. 60.

    , , , & Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

  61. 61.

    et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

  62. 62.

    et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

  63. 63.

    et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

  64. 64.

    , , , & Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010).

  65. 65.

    et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

  66. 66.

    et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

  67. 67.

    , , , & Coherent two- electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

  68. 68.

    , & Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

  69. 69.

    , & Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

  70. 70.

    , & Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

  71. 71.

    , , & Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007).

  72. 72.

    et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).

  73. 73.

    , , , & Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

  74. 74.

    , , , & Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

  75. 75.

    et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

  76. 76.

    & Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).

  77. 77.

    & Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).

  78. 78.

    et al. Strain reconstruction of the valence band in Ga1−xInxSb GaSb quantum-wells. Surf. Sci. 228, 270–274 (1990).

  79. 79.

    et al. Two-dimensional spin confinement in strained-layer quantum wells. Phys. Rev. B 42, 9237–9240 (1990).

  80. 80.

    , , , & Subpicosecond spin relaxation dynamics of excitons and free-carriers in GaAs quantum-wells. Phys. Rev. Lett. 67, 3432–3435 (1991).

  81. 81.

    et al. Hole spin quantum beats in quantum-well structures. Phys. Rev. B 60, 5811–5817 (1999).

  82. 82.

    et al. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. Phys. Rev. Lett. 99, 187401 (2007).

  83. 83.

    et al. Spin dynamics of electrons and holes in InGaAs/GaAs quantum wells at millikelvin temperatures. Phys. Rev. B 81, 195304 (2010).

  84. 84.

    , , & Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

  85. 85.

    , , & Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

  86. 86.

    et al. Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601 (2009).

  87. 87.

    , & Pseudopotential calculation of the excitonic fine structure of millionatom self-assembled In1−xGaxAs/GaAs quantum dots. Phys. Rev. B 67, 161306 (2003).

  88. 88.

    et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011).

  89. 89.

    et al. The nonlinear Fano effect. Nature 451, 311–314 (2008).

  90. 90.

    et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

  91. 91.

    , , , & Fast high fidelity hole spin initialization in a single InGaAs quantum dot. Appl. Phys. Lett. 97, 061113 (2010).

  92. 92.

    et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

  93. 93.

    et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

  94. 94.

    , & Relaxation of hole spins in quantum dots via two-phonon processes. Phys. Rev. Lett. 103, 106601 (2009).

  95. 95.

    , , & Atomistic pseudopotential theory of spin relaxation in selfassembled In1−xGaxAs/GaAs quantum dots at zero magnetic field. Phys. Rev. B 85, 045317 (2012).

  96. 96.

    Coherent population trapping in a single-hole-charged quantum dot. Phys. Stat. Sol. (b) 243, 3725–3729 (2006).

  97. 97.

    , & Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

  98. 98.

    , , & Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

  99. 99.

    et al. Observation and explanation of strong electrically tunable exciton g factors in composition engineered In(Ga)As quantum dots. Phys. Rev. B 83, 161303 (2011).

  100. 100.

    , & Flatté, M. E. Method for full Bloch sphere control of a localized spin via a single electrical gate. Appl. Phys. Lett. 92, 222502 (2008).

  101. 101.

    , & Kondo excitons in self-assembled quantum dots. Phys. Rev. B 67, 241307 (2003).

  102. 102.

    et al. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 100, 176801 (2008).

  103. 103.

    et al. Quantum quench of Kondo correlations in optical absorption. Nature 474, 627–630 (2011).

  104. 104.

    Optical microcavities. Nature 424, 839–846 (2003).

  105. 105.

    , , , & Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102, 097403 (2009).

  106. 106.

    , , , & Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

  107. 107.

    et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  108. 108.

    , , , & Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nature Photon. 5, 230–233 (2011).

Download references

Acknowledgements

Heartfelt thanks go to my two main collaborators K. Karrai and P. M. Petroff. R. J. W. thanks C. Kloeffel and A. Ludwig for reading the manuscript critically; A. Kuhlmann, J. Houel and A. Ludwig for providing unpublished data; and financial support from the Swiss National Science Foundation and NCCR Quantum Science and Technology.

Author information

Affiliations

  1. Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

    • Richard J. Warburton

Authors

  1. Search for Richard J. Warburton in:

Competing interests

The author declares no competing financial interests.

Corresponding author

Correspondence to Richard J. Warburton.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat3585

Further reading