Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single spins in self-assembled quantum dots

Abstract

Self-assembled quantum dots have excellent photonic properties. For instance, a single quantum dot is a high-brightness, narrow-linewidth source of single photons. Furthermore, the environment of a single quantum dot can be tailored relatively easily using semiconductor heterostructure and post-growth processing techniques, enabling electrical control of the quantum dot charge and control over the photonic modes with which the quantum dot interacts. A single electron or hole trapped inside a quantum dot has spintronics applications. Although the spin dephasing is rather rapid, a single spin can be manipulated using optical techniques on subnanosecond timescales. Optical experiments are also providing new insights into old issues, such as the central spin problem. This Review provides a snapshot of this active field, with some indications for the future. It covers the basic materials and optical properties of single quantum dots, techniques for initializing, manipulating and reading out single spin qubits, and the mechanisms that limit the electron-spin and hole-spin coherence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonics of a single self-assembled quantum dot at zero magnetic field.
Figure 2: Coulomb blockade of a single quantum dot.
Figure 3: Single spin physics and level diagrams.
Figure 4: Electron spin initialization and manipulation.
Figure 5: Ultrafast manipulation of a single electron spin.
Figure 6: Hyperfine interaction of an electron spin and a hole spin with the nuclear spins in the host material.
Figure 7: Single-shot spin readout.
Figure 8: Hole spin initialization and manipulation.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Khaetskii, A. V. & Nazarov, Y. V. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 64, 125316 (2001).

    Article  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  4. Fischer, J. & Loss, D. Dealing with decoherence. Science 324, 1277–1278 (2009).

    Article  CAS  Google Scholar 

  5. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  6. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  7. Liu, R. B., Yao, W. & Sham, L. J. Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

    Article  CAS  Google Scholar 

  8. Leonard, D., Pond, K. & Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50, 11687–11692 (1994).

    Article  CAS  Google Scholar 

  9. Mlinar, V. et al. Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: Using theory to close the loop. Phys. Rev. B 80, 165425 (2009).

    Article  CAS  Google Scholar 

  10. Zrenner, A. A close look on single quantum dots. J. Chem. Phys. 112, 7790–7798 (2000).

    Article  CAS  Google Scholar 

  11. Garcia, J. M., Mankad, T., Holtz, P. O., Wellman, P. J. & Petroff, P. M. Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72, 3172–3174 (1998).

    Article  CAS  Google Scholar 

  12. Langbein, W. et al. Control of fine-structure splitting and biexciton binding in InxGa1 −xAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004).

    Article  CAS  Google Scholar 

  13. Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008).

    Article  CAS  Google Scholar 

  14. Karrai, K. & Warburton, R. J. Optical transmission and reflection spectroscopy of single quantum dots. Superlattices and Microstructures 33, 311–337 (2003).

    Article  CAS  Google Scholar 

  15. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  CAS  Google Scholar 

  16. Hogele, A. et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004).

    Article  CAS  Google Scholar 

  17. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  CAS  Google Scholar 

  18. Vamivakas, A. N., Zhao, Y., Lu, C. Y. & Atatuere, M. Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009).

    Article  CAS  Google Scholar 

  19. Yilmaz, S. T., Fallahi, P. & Imamoglu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

    Article  CAS  Google Scholar 

  20. Kroner, M. et al. Resonant saturation laser spectroscopy of a single self-assembled quantum dot. Physica E 40, 1994–1996 (2008).

    Article  Google Scholar 

  21. Kroner, M. et al. Rabi splitting and ac-Stark shift of a charged exciton. Appl. Phys. Lett. 92, 031108 (2008).

    Article  CAS  Google Scholar 

  22. Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

    Article  CAS  Google Scholar 

  23. Ramsay, A. J. et al. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett. 104, 017402 (2010).

    Article  CAS  Google Scholar 

  24. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  CAS  Google Scholar 

  25. Crooker, S. A. et al. Spin noise of electrons and holes in self-assembled quantum dots. Phys. Rev. Lett. 104, 036601 (2010).

    Article  CAS  Google Scholar 

  26. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P. & Petroff, P. M. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994).

    Article  CAS  Google Scholar 

  27. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  CAS  Google Scholar 

  28. Seidl, S. et al. Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot. Phys. Rev. B 72, 195339 (2005).

    Article  CAS  Google Scholar 

  29. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  CAS  Google Scholar 

  30. Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  CAS  Google Scholar 

  31. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    Article  CAS  Google Scholar 

  32. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  CAS  Google Scholar 

  33. McFarlane, J. et al. Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot. Appl. Phys. Lett. 94, 093113 (2009).

    Article  CAS  Google Scholar 

  34. Hogele, A. et al. Spin-selective optical absorption of singly charged excitons in a quantum dot. Appl. Phys. Lett. 86, 221905 (2005).

    Article  CAS  Google Scholar 

  35. Belhadj, T. et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 97, 051111 (2010).

    Article  CAS  Google Scholar 

  36. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  CAS  Google Scholar 

  37. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    Article  CAS  Google Scholar 

  38. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  CAS  Google Scholar 

  39. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  40. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  CAS  Google Scholar 

  41. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  CAS  Google Scholar 

  42. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 703–709 (2011).

    Article  CAS  Google Scholar 

  43. Kroner, M. et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B 78, 075429 (2008).

    Article  CAS  Google Scholar 

  44. Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

    Article  CAS  Google Scholar 

  45. Amasha, S. et al. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008).

    Article  CAS  Google Scholar 

  46. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  Google Scholar 

  47. Lu, C-Y. et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence. Phys. Rev. B 81, 035332 (2010).

    Article  CAS  Google Scholar 

  48. Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  CAS  Google Scholar 

  49. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  50. Kroner, M. et al. Optical detection of single-electron spin resonance in a quantum dot. Phys. Rev. Lett. 100, 156803 (2008).

    Article  CAS  Google Scholar 

  51. Kastler, A. Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 47, 460–465 (1957).

    Article  CAS  Google Scholar 

  52. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

    Article  CAS  Google Scholar 

  53. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  54. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  CAS  Google Scholar 

  55. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with n uclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  CAS  Google Scholar 

  56. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  CAS  Google Scholar 

  57. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  CAS  Google Scholar 

  58. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  CAS  Google Scholar 

  59. Vink, I. T. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys. 5, 764–768 (2009).

    Article  CAS  Google Scholar 

  60. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Article  CAS  Google Scholar 

  61. Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

    Article  CAS  Google Scholar 

  62. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  CAS  Google Scholar 

  63. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  CAS  Google Scholar 

  64. Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010).

    Article  CAS  Google Scholar 

  65. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  CAS  Google Scholar 

  66. Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

    Article  CAS  Google Scholar 

  67. Weiss, K. M., Elzerman, J. M., Delley, Y. L., Miguel-Sanchez, J. & Imamoglu, A. Coherent two- electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

    Article  CAS  Google Scholar 

  68. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  CAS  Google Scholar 

  69. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

    Article  CAS  Google Scholar 

  70. Latta, C., Srivastava, A. & Imamoglu, A. Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

    Article  CAS  Google Scholar 

  71. Atatuere, M., Dreiser, J., Badolato, A. & Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007).

    Article  CAS  Google Scholar 

  72. Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).

    Article  CAS  Google Scholar 

  73. Mikkelsen, M. H., Berezovsky, J., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

    Article  CAS  Google Scholar 

  74. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  CAS  Google Scholar 

  75. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  CAS  Google Scholar 

  76. Bulaev, D. V. & Loss, D. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).

    Article  CAS  Google Scholar 

  77. Bulaev, D. V. & Loss, D. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).

    Article  CAS  Google Scholar 

  78. Warburton, R. J. et al. Strain reconstruction of the valence band in Ga1 −xInxSb GaSb quantum-wells. Surf. Sci. 228, 270–274 (1990).

    Article  CAS  Google Scholar 

  79. Martin, R. W. et al. Two-dimensional spin confinement in strained-layer quantum wells. Phys. Rev. B 42, 9237–9240 (1990).

    Article  CAS  Google Scholar 

  80. Damen, T. C., Vina, L., Cunningham, J. E., Shah, J. & Sham, L. J. Subpicosecond spin relaxation dynamics of excitons and free-carriers in GaAs quantum-wells. Phys. Rev. Lett. 67, 3432–3435 (1991).

    Article  CAS  Google Scholar 

  81. Marie, X. et al. Hole spin quantum beats in quantum-well structures. Phys. Rev. B 60, 5811–5817 (1999).

    Article  CAS  Google Scholar 

  82. Syperek, M. et al. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. Phys. Rev. Lett. 99, 187401 (2007).

    Article  CAS  Google Scholar 

  83. Fokina, L. V. et al. Spin dynamics of electrons and holes in InGaAs/GaAs quantum wells at millikelvin temperatures. Phys. Rev. B 81, 195304 (2010).

    Article  CAS  Google Scholar 

  84. Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  CAS  Google Scholar 

  85. Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

    Article  CAS  Google Scholar 

  86. Eble, B. et al. Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601 (2009).

    Article  CAS  Google Scholar 

  87. Bester, G., Nair, S. & Zunger, A. Pseudopotential calculation of the excitonic fine structure of millionatom self-assembled In1 −xGaxAs/GaAs quantum dots. Phys. Rev. B 67, 161306 (2003).

    Article  CAS  Google Scholar 

  88. Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011).

    Article  CAS  Google Scholar 

  89. Kroner, M. et al. The nonlinear Fano effect. Nature 451, 311–314 (2008).

    Article  CAS  Google Scholar 

  90. Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    Article  CAS  Google Scholar 

  91. Godden, T. M., Boyle, S. J., Ramsay, A. J., Fox, A. M. & Skolnick, M. S. Fast high fidelity hole spin initialization in a single InGaAs quantum dot. Appl. Phys. Lett. 97, 061113 (2010).

    Article  CAS  Google Scholar 

  92. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  CAS  Google Scholar 

  93. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

    Article  CAS  Google Scholar 

  94. Trif, M., Simon, P. & Loss, D. Relaxation of hole spins in quantum dots via two-phonon processes. Phys. Rev. Lett. 103, 106601 (2009).

    Article  CAS  Google Scholar 

  95. Wei, H., Gong, M., Guo, G. C. & He, L. Atomistic pseudopotential theory of spin relaxation in selfassembled In1 −xGaxAs/GaAs quantum dots at zero magnetic field. Phys. Rev. B 85, 045317 (2012).

    Article  CAS  Google Scholar 

  96. Imamoglu, A. Coherent population trapping in a single-hole-charged quantum dot. Phys. Stat. Sol. (b) 243, 3725–3729 (2006).

    Article  CAS  Google Scholar 

  97. Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    Article  CAS  Google Scholar 

  98. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    Article  CAS  Google Scholar 

  99. Jovanov, V. et al. Observation and explanation of strong electrically tunable exciton g factors in composition engineered In(Ga)As quantum dots. Phys. Rev. B 83, 161303 (2011).

    Article  CAS  Google Scholar 

  100. Pingenot, J., Pryor, C. E. & Flatté, M. E. Method for full Bloch sphere control of a localized spin via a single electrical gate. Appl. Phys. Lett. 92, 222502 (2008).

    Article  CAS  Google Scholar 

  101. Govorov, A. O., Karrai, K. & Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 67, 241307 (2003).

    Article  CAS  Google Scholar 

  102. Dalgarno, P. A. et al. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 100, 176801 (2008).

    Article  CAS  Google Scholar 

  103. Latta, C. et al. Quantum quench of Kondo correlations in optical absorption. Nature 474, 627–630 (2011).

    Article  CAS  Google Scholar 

  104. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  105. Rakher, M. T., Stoltz, N. G., Coldren, L. A., Petroff, P. M. & Bouwmeester, D. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102, 097403 (2009).

    Article  CAS  Google Scholar 

  106. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

    Article  CAS  Google Scholar 

  107. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  CAS  Google Scholar 

  108. Akopian, N., Wang, L., Rastelli, A., Schmidt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nature Photon. 5, 230–233 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Heartfelt thanks go to my two main collaborators K. Karrai and P. M. Petroff. R. J. W. thanks C. Kloeffel and A. Ludwig for reading the manuscript critically; A. Kuhlmann, J. Houel and A. Ludwig for providing unpublished data; and financial support from the Swiss National Science Foundation and NCCR Quantum Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Warburton.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warburton, R. Single spins in self-assembled quantum dots. Nature Mater 12, 483–493 (2013). https://doi.org/10.1038/nmat3585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing