Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms

Abstract

Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Crystalline Au nanoprisms and TPL microscopy.
Figure 2: Polarization control of TPL maps.
Figure 3: Influence of incident wavelength.
Figure 4: TPL signal and SP-LDOS.
Figure 5: SP-LDOS engineering in coupled crystalline nanoprisms.
Figure 6: Plasmonic modal logic gates in coupled nanoprisms.

References

  1. Brongersma, M. L., Hartman, J. W. & Atwater, H. A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62, R16356–R16359 (2000).

    CAS  Article  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  Article  Google Scholar 

  3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Article  Google Scholar 

  4. Pleros, N. et al. IEEE Photonics Society, 2010 23rd Annual Meeting of the 165–166 (2010).

  5. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    CAS  Article  Google Scholar 

  6. Grandidier, J. et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

    CAS  Article  Google Scholar 

  7. Drezet, A. et al. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B 149, 220–229 (2008).

    CAS  Article  Google Scholar 

  8. Krenn, J. R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999).

    CAS  Article  Google Scholar 

  9. Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).

    CAS  Article  Google Scholar 

  10. Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).

    CAS  Article  Google Scholar 

  11. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    CAS  Article  Google Scholar 

  12. Camden, J. P., Dieringer, J. A., Zhao, J. & Van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41, 1653–1661 (2008).

    CAS  Article  Google Scholar 

  13. Chicanne, C. et al. Imaging the local density of states of optical corrals. Phys. Rev. Lett. 88, 097402 (2002).

    CAS  Article  Google Scholar 

  14. Bouhelier, A. et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005).

    CAS  Article  Google Scholar 

  15. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    CAS  Article  Google Scholar 

  16. Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    Article  Google Scholar 

  17. Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F. & Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008).

    Article  Google Scholar 

  18. McLeod, A. et al. Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy. Phys. Rev. Lett. 106, 037402 (2011).

    CAS  Article  Google Scholar 

  19. Vesseur, E. J. R., García de Abajo, F. J. & Polman, A. Modal decomposition of surface-plasmon whispering gallery resonators. Nano Lett. 9, 3147–3150 (2009).

    CAS  Article  Google Scholar 

  20. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    CAS  Article  Google Scholar 

  21. Douillard, L. et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008).

    CAS  Article  Google Scholar 

  22. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    CAS  Article  Google Scholar 

  23. Duan, H., Fernández-Domı´nguez, A. I., Bosman, M., Maier, S. A. & Yang, J. K. W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012).

    CAS  Article  Google Scholar 

  24. Gu, L. et al. Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Phys. Rev. B 83, 195433 (2011).

    Article  Google Scholar 

  25. Garcia de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    CAS  Article  Google Scholar 

  26. Hoogenboom, J. P. et al. The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity. Nano Lett. 9, 1189–1195 (2009).

    CAS  Article  Google Scholar 

  27. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Article  Google Scholar 

  28. Wei, H., Wang, Z., Tian, X., Kall, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nature Commun. 2, 387 (2011).

    Article  Google Scholar 

  29. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Article  Google Scholar 

  30. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000).

    CAS  Article  Google Scholar 

  31. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  Google Scholar 

  32. Huang, J. S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010).

    Article  Google Scholar 

  33. Dorfmuller, J. et al. Fabry–Perot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9, 2372–2377 (2009).

    Article  Google Scholar 

  34. Pyayt, A. L., Wiley, B., Xia, Y. N., Chen, A. & Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotechnol. 3, 660–665 (2008).

    CAS  Article  Google Scholar 

  35. Song, M. X. et al. Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires. ACS Nano 5, 5874–5880 (2011).

    CAS  Article  Google Scholar 

  36. Awada, C. et al. Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation. J. Phys. Chem. C 116, 14591–14598 (2012).

    CAS  Article  Google Scholar 

  37. Imura, K., Nagahara, T. & Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 109, 13214–13220 (2005).

    CAS  Article  Google Scholar 

  38. Boyd, G. T., Yu, Z. H. & Shen, Y. R. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923–7936 (1986).

    CAS  Article  Google Scholar 

  39. Teulle, A. et al. Scanning optical microscopy modeling in nanoplasmonics. J. Opt. Soc. Am. B 29, 2431–2437 (2012).

    CAS  Article  Google Scholar 

  40. Girard, C. et al. Imaging surface photonic states with a circularly polarized tip. Europhys. Lett. 68, 797–803 (2004).

    CAS  Article  Google Scholar 

  41. Fang, Y. R. et al. Branched silver nanowires as controllable plasmon routers. Nano Lett. 10, 1950–1954 (2010).

    CAS  Article  Google Scholar 

  42. Shannon, C. E. A symbolic analysis of relay and switching circuits. Trans. Am. Inst. Electrical Engineers 57, 713–723 (1938).

    Article  Google Scholar 

  43. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Article  Google Scholar 

  44. Bao, Q. L. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC; contract number ERC–2007-StG Nr 203872 COMOSYEL), Agence Nationale de la Recherche (ANR; grant ANR-09- BLAN-0049-01 Plastips), the CPER ‘Gaston Dupouy’ 2007–2013 and the massively parallel computing centre CALMIP in Toulouse.

Author information

Authors and Affiliations

Authors

Contributions

E.D., A.A. and C.G. designed the research. J.S. and E.D. developed the new synthesis of nanoprisms and J.S. produced the samples. S.V., A.T. and E.D. prepared the TPL samples and performed the SEM and AFM imaging. A.A. and R.M. developed the optical set-up. S.V., A.A., A.T. and R.M. performed the TPL experiments. C.G. conceived the theoretical framework and implemented the simulation codes with R.M. and A.T. Simulations were performed by C.G., R.M. and A.T. All authors contributed to the data analysis, figure preparation and manuscript writing.

Corresponding authors

Correspondence to Arnaud Arbouet or Erik Dujardin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 528 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viarbitskaya, S., Teulle, A., Marty, R. et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nature Mater 12, 426–432 (2013). https://doi.org/10.1038/nmat3581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3581

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing