Optical excitation of Josephson plasma solitons in a cuprate superconductor

Article metrics

Abstract

Josephson plasma waves are linear electromagnetic modes that propagate along the planes of cuprate superconductors, sustained by interlayer tunnelling supercurrents. For strong electromagnetic fields, as the supercurrents approach the critical value, the electrodynamics become highly nonlinear. Josephson plasma solitons (JPSs) are breather excitations predicted in this regime, bound vortex–antivortex pairs that propagate coherently without dispersion. We experimentally demonstrate the excitation of a JPS in La1.84Sr0.16CuO4, using intense narrowband radiation from an infrared free-electron laser tuned to the 2-THz Josephson plasma resonance. The JPS becomes observable as it causes a transparency window in the opaque spectral region immediately below the plasma resonance. Optical control of magnetic-flux-carrying solitons may lead to new applications in terahertz-frequency plasmonics, in information storage and transport and in the manipulation of high-Tc superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Calculated space- and time-dependent interlayer phase for φz(x,t) for two pump wavelengths above resonance.
Figure 2: Calculated space- and time-dependent interlayer phase for φz(x,t) for ωFEL = 0.97ωJPR and four pump intensities: 9 V cm−1, 38 kV cm−1, 39 kV cm−1, 42 kV cm−1.
Figure 3: Pictorial representation of a JPS as it propagates at four time delays.
Figure 4: Equilibrium optical properties of La1.84Sr0.16CuO4.
Figure 5: Time-dependent optical properties of La1.84Sr0.16CuO4 for three excitation frequencies.
Figure 6: Perturbed loss functions.

References

  1. 1

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

  2. 2

    Tobey, R. I., Prabhakaran, D., Boothroyd, A. T. & Cavalleri, A. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: Evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

  3. 3

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

  4. 4

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

  5. 5

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys. 7, 854 (2011).

  6. 6

    Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104(R) (2011).

  7. 7

    Liu, M. et al. THz field induced insulator to metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

  8. 8

    Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nature Photon. 5, 485–488 (2011).

  9. 9

    Lawrence, W. E. & Doniach, S. in Proc. 12th Int. Conf. Low Temp. Phys. (ed. Kanda, E.) 361–362 (Tokyo Keigaku Publishing, 1971).

  10. 10

    Kleiner, R., Steinmeyer, F., Kunkel, G. & Muller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single-crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

  11. 11

    Tsui, O. K. C., Ong, N. P., Matsuda, Y., Yan, Y. F. & Peterson, J. B. Sharp magnetoabsorption resonances in the vortex state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 73, 724–727 (1994).

  12. 12

    Matsuda, Y., Gaifullin, M. B., Kumagai, K., Kadowaki, K. & Mochiku, T. Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 75, 4512–4515 (1995).

  13. 13

    Tsui, O. K. C., Ong, N. P. & Peterson, J. B. Excitation of the Josephson plasma mode in Bi2Sr2CaCu2O8+δ in an oblique field. Phys. Rev. Lett. 76, 819–822 (1996).

  14. 14

    Tamasaku, K., Nakamura, Y. & Uchida, S. Charge dynamics across the CuO2 planes in La2−xSrxCuO4 . Phys. Rev. Lett. 69, 1455–1458 (1992).

  15. 15

    Savel’ev, S., Rakhmanov, A. L., Yampol’skii, V. A. & Nori, F. Analogues of nonlinear optics using terahertz Josephson plasma waves in layered superconductors. Nature Phys. 2, 521–525 (2006).

  16. 16

    Savel’ev, S., Yampol’skii, V. A., Rakhmanov, A. L. & Nori, F. Terahertz Josephson plasma waves in layered superconductors: Spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys. 73, 026501 (2010).

  17. 17

    Hu, X. & Lin, S. Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).

  18. 18

    Sievers, A. J. & Takeno, S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988).

  19. 19

    Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001).

  20. 20

    Sharon, E., Cohen, G. & Fineberg, J. Propagating solitary waves along a rapidly moving crack front. Nature 410, 68–71 (2001).

  21. 21

    Flach, S. & Willis, C. R. Discrete breathers. Phys. Rep. 295, 181–264 (1998).

  22. 22

    Vitanov, N. K. Breather and soliton wave families for the sine-Gordon equation. Proc. R. Soc. Lond. A 454, 2409–2423 (1998).

  23. 23

    Thorsmolle, V. K. et al. C-axis Josephson plasma resonance observed in Ti2Ba2CaCu2O8 superconducting thin films by use of terahertz time-domain spectroscopy. Opt. Lett. 26, 1292–1294 (2001).

  24. 24

    Dreyhaupt, A., Winnerl, S., Dekorsy, T. & Helm, M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005).

  25. 25

    Kresin, V. Z. & Morawitz, H. Layer plasmons and high- Tc superconductivity. Phys. Rev. B 37, 7854–7857 (1988).

  26. 26

    Basov, D. N. et al. Sum rules and interlayer conductivity of high- Tc cuprates. Science 283, 49–52 (1999).

  27. 27

    Dordevic, S. V., Komiya, S., Ando, Y. & Basov, D. N. Josephson plasmon and inhomogeneous superconducting state in La2−xSrxCuO4 . Phys. Rev. Lett. 91, 167401 (2003).

  28. 28

    Apostolov, S. S., Maizelis, Z. A., Sorokina, M. A., Yampol’skii, V. A. & Nori, F. Self-induced tunable transparency in layered superconductors. Phys. Rev. B 82, 144521 (2010).

  29. 29

    Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

  30. 30

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

  31. 31

    Boller, K-J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

  32. 32

    Abdumalikov, A. A. Jr et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).

  33. 33

    Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

  34. 34

    Fulton, T. A., Dynes, R. C. & Anderson, P. W. Flux shuttle-Josephson junction shift register employing single flux quanta. Proc. IEEE 61, 28–35 (1973).

  35. 35

    Nakajima, K., Onodera, Y. & Ogawa, Y. Logic design of Josephson network. J. Appl. Phys. 47, 1620–1627 (1976).

  36. 36

    Feurer, T. A., Vaughan, J. C. & Nelson, K. A. Spatiotemporal control of lattice vibrational waves. Science 413, 374–377 (2001).

Download references

Acknowledgements

We thank Y. Laplace for fruitful discussions. Research at the University of Oxford was supported by a 2004 European Young Investigator Award, by the Royal Society through the Paul Instrument Fund and by the EPSRC under the program Next Generation Facility Users. Research at the MPSD-CFEL in Hamburg was funded through core support by the Max Planck Society and the University of Hamburg. E.C. acknowledges the support from IMPRS-UFAST. We are grateful to P. Michel and the FELBE team for their dedicated support.

Author information

A.C. conceived the project. A.D. and D.F. designed and built the experimental set-up and led the experimental activities. A.D., D.F., M.H., V.K. and N.D. performed the experiment and collected the data with assistance from M.G., S.W. and W.S.; A.D. analysed the data. E.C., L.Z. and M.E. developed the theoretical model and performed the simulation. S.P., H.T. and T.T. grew the samples. A.C. wrote the manuscript with contributions from E.C., L.Z. and M.E.

Correspondence to A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 675 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dienst, A., Casandruc, E., Fausti, D. et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nature Mater 12, 535–541 (2013) doi:10.1038/nmat3580

Download citation

Further reading