Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fluctuating charge-density waves in a cuprate superconductor

Abstract

Cuprate materials hosting high-temperature superconductivity (HTS) also exhibit various forms of charge and spin ordering1,2,3,4,5,6 whose significance is not fully understood7. So far, static charge-density waves8 (CDWs) have been detected by diffraction probes only at particular doping levels9,10,11 or in an applied external field12 . However, dynamic CDWs may also be present more broadly and their detection, characterization and relationship with HTS remain open problems. Here we present a method based on ultrafast spectroscopy to detect the presence and measure the lifetimes of CDW fluctuations in cuprates. In an underdoped La1.9Sr0.1CuO4 film (Tc = 26 K), we observe collective excitations of CDW that persist up to 100 K. This dynamic CDW fluctuates with a characteristic lifetime of 2 ps at T = 5 K that decreases to 0.5 ps at T = 100 K. In contrast, in an optimally doped La1.84Sr0.16CuO4 film (Tc = 38.5 K), we detect no signatures of fluctuating CDWs at any temperature, favouring the competition scenario. This work forges a path for studying fluctuating order parameters in various superconductors and other materials.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fluctuating density waves and their normal modes.
Figure 2: Raw data traces indicate the presence of coherent modes of the CDW in La2−xSrxCuO4 for x = 0.10 but not for x = 0.16.
Figure 3: Analysis of the amplitudon response as a function of temperature.
Figure 4: Analysis of the phason response as a function of temperature.

References

  1. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010).

    CAS  Article  Google Scholar 

  2. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    CAS  Article  Google Scholar 

  3. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    CAS  Article  Google Scholar 

  4. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    CAS  Article  Google Scholar 

  5. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    CAS  Article  Google Scholar 

  6. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3Oy . Nature Phys. 8, 871–876 (2012).

    CAS  Article  Google Scholar 

  7. Kivelson, S., Bindloss, I. & Fradkin, E. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    CAS  Article  Google Scholar 

  8. Abbamonte, P. et al. Spatially modulated ‘Mottness’ in La2−xBaxCuO4 . Nature Phys. 1, 155–158 (2005).

    CAS  Article  Google Scholar 

  9. Tranquada, J., Sternlieb, B., Axe, J. & Nakamura, Y. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  Google Scholar 

  10. Crawford, M. K. et al. Lattice instabilities and the effect of copper-oxygen-sheet distortions on superconductivity in doped La2CuO4 . Phys. Rev. B 44, 7749–7752 (1991).

    CAS  Article  Google Scholar 

  11. Klauss, H-H. et al. From antiferromagnetic order to static magnetic stripes: The phase diagram of (La,Eu)2−xSrxCuO4 . Phys. Rev. Lett. 85, 4590–4593 (2000).

    CAS  Article  Google Scholar 

  12. Axe, J. D. et al. Structural phase transformations and superconductivity in La2−xBaxCuO4 . Phys. Rev. Lett. 62, 2751–2754 (1989).

    CAS  Article  Google Scholar 

  13. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high- Tc oxides. Phys. Rev. B 40, 7391–7394 (1989).

    CAS  Article  Google Scholar 

  14. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nature Phys. 7, 298–302 (2011).

    CAS  Article  Google Scholar 

  15. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

    CAS  Article  Google Scholar 

  16. Averitt, R. D. & Taylor, A. J. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J. Phys. Condens. Matter 14, R1357 (2002).

    CAS  Article  Google Scholar 

  17. Demsar, J., Biljakovic, K. & Mihailovic, D. Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 83, 800–803 (1999).

    CAS  Article  Google Scholar 

  18. Tassini, L. et al. Dynamical properties of charged stripes in La2−xSrxCuO4 . Phys. Rev. Lett. 95, 117002 (2005).

    CAS  Article  Google Scholar 

  19. Sugai, S., Takayanagi, Y. & Hayamizu, N. Phason and amplitudon in the charge-density-wave phase of one-dimensional charge stripes in La2−xSrxCuO4 . Phys. Rev. Lett. 96, 137003 (2006).

    CAS  Article  Google Scholar 

  20. Ren, Y., Xu, Z. & Lüpke, G. Ultrafast collective dynamics in the charge-density-wave conductor K0.3MoO3 . J. Chem. Phys. 120, 4755–4758 (2004).

    CAS  Article  Google Scholar 

  21. Sagar, D. M., Tsvetkov, A. A., Fausti, D., Smaalen, S. V. & Loosdrecht, P. H. M. V. Coherent amplitudon generation in blue bronze through ultrafast interband quasi-particle decay. J. Phys. Condens. Matter 19, 346208 (2007).

    Article  Google Scholar 

  22. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    CAS  Article  Google Scholar 

  23. Liu, H. Y. et al. Possible coherent phason oscillations in the optically-driven K0.3MoO3 charge density wave. Preprint at http://arxiv.org/abs/1206.5743 (2012).

  24. Gedik, N. & Orenstein, J. Absolute phase measurement in heterodyne detection of transient gratings. Opt. Lett. 29, 2109–2111 (2004).

    Article  Google Scholar 

  25. Takada, S., Wong, K. & Holstein, T. Damping of charge-density-wave motion. Phys. Rev. B 32, 4639–4652 (1985).

    CAS  Article  Google Scholar 

  26. Levanyuk, A. P., Minyukov, S. A., Etrillard, J. & Toudic, B. Low-frequency phonon dynamics and spin-lattice relaxation time in the incommensurate phase at low temperatures. Phys. Rev. B 56, 8734–8742 (1997).

    CAS  Article  Google Scholar 

  27. Bianchi, G., Chen, C., Nohara, M., Takagi, H. & Ryan, J. F. Competing phases in the superconducting state of La2−xSrxCuO4: Temperature and magnetic field dependent quasiparticle relaxation measurements. Phys. Rev. B 72, 094516 (2005).

    Article  Google Scholar 

  28. Beyer, M. et al. Photoinduced melting of superconductivity in the high-Tc superconductor La2−xSrxCuO4 probed by time-resolved optical and terahertz techniques. Phys. Rev. B 83, 214515 (2011).

    Article  Google Scholar 

  29. Sugai, S. et al. Symmetry breaking on the phonon Raman spectra only at the superconductor compositions in La2−xSrxCuO4 . Solid State Commun. 76, 371–376 (1990).

    CAS  Article  Google Scholar 

  30. Wang, C-Z., Yu, R. & Krakauer, H. First-principles calculations of phonon dispersion and lattice dynamics in La2CuO4 . Phys. Rev. B 59, 9278–9284 (1999).

    CAS  Article  Google Scholar 

  31. Zeiger, H. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

    CAS  Article  Google Scholar 

  32. Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

    CAS  Article  Google Scholar 

  33. Yan, Y-X. & Nelson, K. A. Impulsive stimulated light scattering. I. general theory. J. Chem. Phys. 87, 6240–6256 (1987).

    CAS  Article  Google Scholar 

  34. Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410–1412 (2003).

    CAS  Article  Google Scholar 

  35. Bozovic, I. et al. Long-lived coherent acoustic waves generated by femtosecond light pulses. Phys. Rev. B 69, 132503 (2004).

    Article  Google Scholar 

  36. Kim, Y-J., Gu, G., Gog, T. & Casa, D. X-ray scattering study of charge density waves in La2−xBaxCuO4 . Phys. Rev. B 77, 064520 (2008).

    Article  Google Scholar 

  37. Wilkins, S. et al. Comparison of stripe modulations in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4 . Phys. Rev. B 84, 195101 (2011).

    Article  Google Scholar 

  38. Lee, P. A. & Rice, T. M. Electric field depinning of charge density waves. Phys. Rev. B 19, 3970–3980 (1979).

    CAS  Article  Google Scholar 

  39. Richard, J. & Chen, J. Damping of charge density waves in NbSe3 . Solid State Commun. 86, 485–488 (1993).

    CAS  Article  Google Scholar 

  40. Bozovic, I. Atomic-layer engineering of superconducting oxides: Yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Todadri, P. Lee and S. Kivelson for useful discussions. D.H.T., F.M. and N.G. were supported by NSF Career Award DMR-0845296. I.B. and A.T.B. were supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by D.H.T. and F.M. The films were synthesized and characterized by A.T.B. and I.B. D.H.T. and F.M. performed the data analysis and wrote the initial draft of the manuscript. All authors participated in the understanding of the data and contributed to the final version of the manuscript. N.G. conceived and supervised the project.

Corresponding authors

Correspondence to Darius H. Torchinsky, Fahad Mahmood or Nuh Gedik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 859 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torchinsky, D., Mahmood, F., Bollinger, A. et al. Fluctuating charge-density waves in a cuprate superconductor. Nature Mater 12, 387–391 (2013). https://doi.org/10.1038/nmat3571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3571

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing