Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution three-photon biomedical imaging using doped ZnS nanocrystals

Abstract

Three-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet owing to its intrinsic low quantum efficiency. We herein report on high-resolution in vitro and in vivo imaging by combining three-photon excitation of ZnS nanocrystals and visible emission from Mn2+ dopants. The large three-photon cross-section of the nanocrystals enabled targeted cellular imaging under high spatial resolution, approaching the theoretical limit of three-photon excitation. Owing to the enhanced Stokes shift achieved through nanocrystal doping, the three-photon process was successfully applied to high-resolution in vivo tumour-targeted imaging. Furthermore, the biocompatibility of ZnS nanocrystals offers great potential for clinical applications of three-photon imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of ZnS:Mn NCs.
Figure 2: Three-photon luminescence characteristics of ZnS:Mn NCs.
Figure 3: In vitro three-photon imaging of MDA-MB-435 cells targeted by ZnS:Mn NC–Lyp-1-conjugates.
Figure 4: In vivo three-photon imaging of ZnS:Mn NC–RGD conjugates targeted to tumour.
Figure 5: In vivo toxicity evaluation of ZnS:Mn NCs.

Similar content being viewed by others

References

  1. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  Google Scholar 

  2. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  3. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  4. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  5. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  6. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  7. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  8. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  9. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  Google Scholar 

  10. Stroh, M. et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Med. 11, 678–682 (2005).

    Article  CAS  Google Scholar 

  11. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10, 993–998 (2004).

    Article  CAS  Google Scholar 

  12. Choi, H. S. & Frangioni, J. V. Nanoparticles for biomedical imaging: Fundamentals of clinical translation. Mol. Imaging 9, 291–310 (2010).

    CAS  Google Scholar 

  13. Bhargava, R. N., Gallagher, D., Hong, X. & Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419 (1994).

    Article  CAS  Google Scholar 

  14. Sooklal, K., Cullum, B. S., Angel, S. M. & Murphy, C. J. Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. J. Phys. Chem. 100, 4551–4555 (1996).

    Article  CAS  Google Scholar 

  15. Suyver, J. F., Wuister, S. F., Kelly, J. J. & Meijerink, A. Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+. Nano Lett. 1, 429–433 (2001).

    Article  CAS  Google Scholar 

  16. Srivastava, B. B. et al. Highly luminescent Mn-doped ZnS nanocrystals: Gram-scale synthesis. J. Phys. Chem. Lett. 1, 1454–1458 (2010).

    Article  CAS  Google Scholar 

  17. Deng, Z. et al. High-quality manganese-doped zinc sulfide quantum rods with tunable dual-color and multiphoton emissions. J. Am. Chem. Soc. 133, 5389–5396 (2011).

    Article  CAS  Google Scholar 

  18. Manzoor, K. et al. Bio-conjugated luminescent quantum dots of doped ZnS: A cyto-friendly system for targeted cancer imaging. Nanotechnology 20, 065102 (2009).

    Article  Google Scholar 

  19. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  20. Bryan, J. D. & Gamelin, D. R. Doped semiconductor nanocrystals: Synthesis, characterization, physical properties and applications. Prog. Inorg. Chem. 54, 47–126 (2005).

    Article  CAS  Google Scholar 

  21. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  22. Yang, Y., Chen, O., Angerhofer, A. & Cao, Y. C. On doping CdS/ZnS core/shell nanocrystals with Mn. J. Am. Chem. Soc. 130, 15649–15661 (2008).

    Article  CAS  Google Scholar 

  23. Bussian, D. A. et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nature Mater. 8, 35–40 (2009).

    Article  CAS  Google Scholar 

  24. Beaulac, R., Schneider, L., Archer, P. I., Bacher, G. & Gamelin, D. R. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325, 973–976 (2009).

    Article  CAS  Google Scholar 

  25. Yu, J. H. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe: Mn2+ quantum nanoribbons. Nature Mater. 9, 47–53 (2010).

    Article  CAS  Google Scholar 

  26. Hell, S. W. et al. Three-photon excitation in fluorescence microscopy. J. Biomed. Opt. 1, 71–74 (1996).

    Article  CAS  Google Scholar 

  27. Wokosin, D. L., Centonze, V. E., Crittenden, S. & White, J. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4, 208–214 (1996).

    Article  Google Scholar 

  28. Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996).

    Article  CAS  Google Scholar 

  29. Maiti, S., Shear, J. B., Williams, R. M., Zipfel, W. R. & Webb, W. W. Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530–532 (1997).

    Article  CAS  Google Scholar 

  30. He, G. S., Markowicz, P. P., Lin, T-C. & Prasad, P. N. Observation of stimulated emission by direct three-photon excitation. Nature 415, 767–770 (2002).

    Article  CAS  Google Scholar 

  31. Chon, J. W. M., Gu, M., Bullen, C. & Mulvaney, P. Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals. Appl. Phys. Lett. 84, 4472–4474 (2004).

    Article  CAS  Google Scholar 

  32. He, J., Ji, W., Mi, J., Zheng, Y. G. & Ying, J. Y. Three-photon absorption in water-soluble ZnS nanocrystals. Appl. Phys. Lett. 88, 181114 (2006).

    Article  Google Scholar 

  33. He, J. et al. Direct observation of three-photon resonance in water-soluble ZnS quantum dots. Appl. Phys. Lett. 92, 131114 (2008).

    Article  Google Scholar 

  34. Xing, G., Ji, W., Zheng, Y. & Ying, J. Y. High efficiency and nearly cubic power dependence of below-band-edge photoluminescence in water-soluble, copper-doped ZnSe/ZnS quantum dots. Opt. Express 16, 5710–5715 (2008).

    Google Scholar 

  35. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  Google Scholar 

  36. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  37. Chen, H-Y., Chen, T-Y. & Son, D. H. Measurement of energy transfer time in colloidal Mn-doped semiconductor nanocrystals. J. Phys. Chem. C 114, 4418–4423 (2010).

    Article  CAS  Google Scholar 

  38. Ruouslahti, E. Specialization of tumour vasculature. Nature Rev. Cancer 2, 83–90 (2002).

    Article  Google Scholar 

  39. Fogal, V., Zhang, L., Krajewski, S. & Rouslahti, E. Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res. 68, 7210–7218 (2008).

    Article  CAS  Google Scholar 

  40. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    Article  CAS  Google Scholar 

  41. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008).

    Article  CAS  Google Scholar 

  42. Centonze, V. E. & White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024 (1998).

    Article  CAS  Google Scholar 

  43. Cai, W. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006).

    Article  CAS  Google Scholar 

  44. Smith, B. R. et al. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett. 8, 2599–2606 (2008).

    Article  CAS  Google Scholar 

  45. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2001).

    Article  CAS  Google Scholar 

  46. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    Article  CAS  Google Scholar 

  47. Hauck, T. S., Anderson, R. E., Fischer, H. C., Newbigging, S. & Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 6, 138–144 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Lutich (Ludwig-Maximilians-Universtität München) for a preliminary study on multi-photon spectroscopy and W. Ji (The National University of Singapore) for helpful discussions on the three-photon excitation mechanism. We thank M-S. Won at the Korea Basic Science Institute (KBSI) for the electron paramagnetic resonance characterization, and S. Her at KBSI for the review and suggestion of animal experiment design. We acknowledge financial support by the Research Center Program of Institute for Basic Science (IBS) in Korea.

Author information

Authors and Affiliations

Authors

Contributions

J.H.Y., S-H.K. and T.H. designed and carried out the experiments, analysed the data and wrote the manuscript. Z.P. and P.S. carried out the FCS study and interpreted the data. S-H.K., O.K.P., J.H.Y. and J.H.K. designed and carried out the multiphoton imaging experiments. J.H.Y., S.W.J., K.S. and D.W.L. carried out the synthesis of the materials. J.H.Y., K.S., M.C. and Y.I.P. carried out the bioconjugation of the NCs. S-H.K., O.K.P. and K.P. carried out the animal experiments. S-H.K., O.K.P., H.B.N. and N.L. carried out the in vitro toxicity evaluation. All authors have reviewed, discussed and approved the results and conclusions of this Article.

Corresponding authors

Correspondence to Jung Ho Yu, Seung-Hae Kwon, Zdeněk Petrášek, Petra Schwille or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2264 kb)

Supplementary Information

Supplementary Movie S1 (AVI 904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Kwon, SH., Petrášek, Z. et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nature Mater 12, 359–366 (2013). https://doi.org/10.1038/nmat3565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing