Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface

Abstract

The range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts1,2,3. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions4,5,6 (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect7,8,9,10. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface11,12,13,14,15,16,17. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La0.7Sr0.3MnO3 electrodes exhibit a TER enhanced by up to ~ 10,000% by a nanometre-thick La0.5Ca0.5MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La0.5Ca0.5MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device geometry, atomic structure and polarization-induced charge accumulation in FTJs.
Figure 2: Transport properties of FTJs.
Figure 3: Ferroelectric and magnetoresistive properties of FTJs.
Figure 4: Results of density functional calculations.

Similar content being viewed by others

References

  1. Mannhart, J. & Schlom, D. G. Oxide interfaces—An opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  2. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J-M. Interface physics in complex oxide heterostructures. Ann. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  3. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  4. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  5. Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Article  Google Scholar 

  6. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  7. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  8. Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).

    Article  CAS  Google Scholar 

  9. Maksymovych, P. et al. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

    Article  CAS  Google Scholar 

  10. Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nature Nanotech. 7, 101–104 (2012).

    Article  CAS  Google Scholar 

  11. Zhuravlev, M. Y., Jaswal, S. S., Tsymbal, E. Y. & Sabirianov, R. F. Ferroelectric switch for spin injection. Appl. Phys. Lett. 87, 222114 (2005).

    Article  Google Scholar 

  12. Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett. 9, 427–432 (2009).

    Article  CAS  Google Scholar 

  13. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  14. Hambe, M. et al. Crossing an interface: Ferroelectric control of tunnel currents in magnetic complex oxide heterostructures. Adv. Funct. Mater. 20, 2436–2441 (2010).

    Article  CAS  Google Scholar 

  15. Yin, Y. W. et al. Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La0.7Sr0.3MnO3/(Ba,Sr)TiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions. J. Appl. Phys. 109, 07D915 (2011).

    Article  Google Scholar 

  16. Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).

    Article  CAS  Google Scholar 

  17. Yin, Y. W. et al. Multiferroic tunnel junctions. Front. Phys. 7, 380–385 (2012).

    Article  Google Scholar 

  18. Tsymbal, E. Y., Gruverman, A., Garcia, V., Bibes, M. & Barthélémy, A. Ferroelectric and multiferroic tunnel junctions. Mater. Res. Soc. Bull. 37, 138–143 (2012).

    Article  CAS  Google Scholar 

  19. Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161 (1971).

    Google Scholar 

  20. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  21. Duan, C-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  Google Scholar 

  22. Niranjan, M. K., Burton, J. D., Velev, J. P., Jaswal, S. S. & Tsymbal, E. Y. Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: An ab initio study. Appl. Phys. Lett. 95, 052501 (2009).

    Article  Google Scholar 

  23. Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nature Mater. 10, 753–758 (2011).

    Article  CAS  Google Scholar 

  24. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001).

    Article  CAS  Google Scholar 

  25. Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).

    Article  Google Scholar 

  26. Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

    Article  CAS  Google Scholar 

  27. Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010).

    Article  CAS  Google Scholar 

  28. Burton, J. D. & Tsymbal, E. Y. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys. Rev. Lett. 106, 157203 (2011).

    Article  CAS  Google Scholar 

  29. Chang, H. J. et al. Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging. Adv. Mater. 23, 2474–2479 (2011).

    Article  CAS  Google Scholar 

  30. Schiffer, P., Ramirez, A. P., Bao, W. & Cheong, S. W. Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3 . Phys. Rev. Lett. 75, 3336 (1995).

    Article  CAS  Google Scholar 

  31. Glazman, L. I. & Matveev, K. A. Inelastic tunneling through thin amorphous films. Sov. Phys. JETP 67, 1276–1282 (1988).

    Google Scholar 

  32. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Pennsylvania State University (PSU) was supported in part by the DOE (Grant No. DE-FG02-08ER4653) and the NSF (Grant No. DMR-1207474). The PSU NSF MRSEC seed grant and NNIN Nanofabrication facilities are acknowledged. The work at USTC was supported by NBRP-2012CB922003 and NSFC. The work at the University of Nebraska-Lincoln (UNL) was supported by NSF MRSEC (Grant No. DMR-0820521) and NSF EPSCoR (Grant No. EPS-1010674). Computations were performed at the UNL Holland Computing Center. The work at ORNL was supported by the Materials Science and Engineering Division of the US DOE.

Author information

Authors and Affiliations

Authors

Contributions

E.Y.T. and J.D.B. predicted the magnetoelectrically induced TER effect and stimulated the experimental studies. Q.L. designed and supervised the experiment. Y.W.Y. fabricated samples and performed transport measurements. Q.L., Y.W.Y. and X.G.L. analysed the data. Y-M.K. and A.Y.B. carried out STEM and EELS measurements in the laboratory led by S.J.P. S.M.Y. performed PFM measurements under the supervision of T.W.N. A.G. assisted in analysing the PFM data. J.D.B. carried out theoretical calculations under the supervision of E.Y.T. Q.L., E.Y.T., Y.W.Y. and J.D.B. wrote the manuscript. All authors contributed to the refinement of the manuscript.

Corresponding authors

Correspondence to E. Y. Tsymbal or Qi Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Burton, J., Kim, YM. et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Mater 12, 397–402 (2013). https://doi.org/10.1038/nmat3564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing