Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleation and growth of magnetite from solution

Abstract

The formation of crystalline materials from solution is usually described by the nucleation and growth theory, where atoms or molecules are assumed to assemble directly from solution1. For numerous systems, the formation of the thermodynamically stable crystalline phase is additionally preceded by metastable intermediates 2. More complex pathways have recently been proposed, such as aggregational processes of nanoparticle precursors or pre-nucleation clusters, which seem to contradict the classical theory3,4,5,6. Here we show by cryogenic transmission electron microscopy that the nucleation and growth of magnetite—a magnetic iron oxide with numerous bio- and nanotechnological applications7—proceed through rapid agglomeration of nanometric primary particles and that in contrast to the nucleation of other minerals5, no intermediate amorphous bulk precursor phase is involved. We also demonstrate that these observations can be described within the framework of classical nucleation theory.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cryo-TEM images of the nucleation and growth process of co-precipitated magnetite.
Figure 2: Magnetite nanoparticle growth.
Figure 3: Model crystallization scenarios from atoms/molecules and primary particles/clusters.
Figure 4: Phase diagram with the estimated ranges for surface- and bulk-energy ratios for ferrihydrite (Fh)/magnetite (Mt) marked by a rectangle.

References

  1. Kashchiev, D. Nucleation: Theory and Basic Applications (Butterworth-Heinemann, 2000).

    Google Scholar 

  2. Ostwald, W. Studien uber die Bildung und Umwandlung fester Korper. Z. Phys. Chem. 22, 289–330 (1897).

    CAS  Google Scholar 

  3. Banfield, J. F., Welch, S. A., Zhang, H., Thomsen Ebert, T. & Lee Penn, R. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    CAS  Article  Google Scholar 

  4. Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl Acad. Sci. USA 101, 12096–12101 (2004).

    CAS  Article  Google Scholar 

  5. Gebauer, D., Volkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    CAS  Article  Google Scholar 

  6. Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    CAS  Article  Google Scholar 

  7. Laurent, S. et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    CAS  Article  Google Scholar 

  8. Coey, J. M. D. & Chien, C. L. Half-metallic ferromagnetic oxides. Mater. Res. Bull. 28, 720–724 (2003).

    CAS  Article  Google Scholar 

  9. Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).

    Article  Google Scholar 

  10. Hu, Q. et al. The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-classical pathways. Faraday Discuss. 159, 509–523 (2012).

    CAS  Article  Google Scholar 

  11. Yuwono, V. M., Burrows, N. D., Soltis, J. A. & Penn, R. L. Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010).

    CAS  Article  Google Scholar 

  12. Van Driessche, A. E. S. et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336, 69–72 (2012).

    CAS  Article  Google Scholar 

  13. Ge, J., Hu, Y., Biasini, M., Beyermann, W. P. & Yin, Y. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342–4345 (2007).

    CAS  Article  Google Scholar 

  14. Cornell, R. M. & Schwertmann, U. The Iron Oxides (Structure, Properties, Reactions, Occurrences and Uses) (Wiley-VCH, 2003).

    Book  Google Scholar 

  15. Faivre, D. & Schüler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008).

    CAS  Article  Google Scholar 

  16. Lowenstam, H. A. Lepidocrocite an apatite mineral and magnetite in teeth of chitons (Polyplacophora). Science 156, 1373–1375 (1967).

    CAS  Article  Google Scholar 

  17. Diebel, C. E., Proksch, R., Green, C. R., Neilson, P. & Walker, M. M. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302 (2000).

    CAS  Article  Google Scholar 

  18. Mann, S., Sparks, N. H. C., Couling, S. B. & Larcombe, M. C. Crystallochemical characterization of magnetic spinels prepared from aqueous solution. J. Chem. Soc. 85, 3033–3044 (1989).

    CAS  Google Scholar 

  19. Blesa, M. A. & Matijevic, E. Phase-transformations of iron-oxides, oxohydroxides, and hydrous oxides in aqueous-media. Adv. Colloid Interface Sci. 29, 173–221 (1989).

    CAS  Article  Google Scholar 

  20. Jolivet, J. P., Belleville, P., Tronc, E. & Livage, J. Influence of Fe(II) on the formation of the spinel iron-oxide in alkaline-medium. Clay Clay Min. 40, 531–539 (1992).

    CAS  Article  Google Scholar 

  21. Faivre, D. et al. Mineralogical and isotopic properties of inorganic nanocrystalline magnetites. Geochim. Cosmochim. Acta 68, 4395–4403 (2004).

    CAS  Article  Google Scholar 

  22. Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Mater. 9, 1010–1014 (2010).

    CAS  Article  Google Scholar 

  23. Flynn, C. M. J. Hydrolysis of inorganic Iron(III) salts. Chem. Rev. 84, 31–41 (1984).

    CAS  Article  Google Scholar 

  24. Hellman, H. et al. Identification of hydrolysis products of FeCl3.6H2O by ESI-MS. J. Mass Spectrom. 41, 1421–1429 (2006).

    CAS  Article  Google Scholar 

  25. Tronc, E., Belleville, P., Jolivet, J. P. & Livage, J. Transformation of ferric hydroxide into spinel by Fe(II) adsorption. Langmuir 8, 313–319 (1992).

    CAS  Article  Google Scholar 

  26. Fratzl, P., Lebowitz, J. L., Penrose, O. & Amar, J. Scaling functions, self-similarity, and the morphology of phase-separating systems. Phys. Rev. B 44, 4794–4811 (1991).

    CAS  Article  Google Scholar 

  27. Mullin, J. W. Crystallization 3rd edn (Butterworth-Heinemann, 1992).

    Google Scholar 

  28. Ziemniak, S. E., Jones, M. E. & Combs, K. E. S. Magnetite solubility and phase stability in alkaline media at elevated temperatures. J. Solut. Chem. 24, 837–877 (1995).

    CAS  Article  Google Scholar 

  29. Navrotsky, A., Ma, C., Lilova, K. & Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330, 199–201 (2010).

    CAS  Article  Google Scholar 

  30. Navrotsky, A. Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12, 2207–2215 (2011).

    CAS  Article  Google Scholar 

  31. Pinney, N., Kubicki, J. D., Middlemiss, D. S., Grey, C. P. & Morgan, D. Density functional theory study of ferrihydrite and related Fe-oxyhydroxides. Chem. Mater. 21, 5727–5742 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

H. Runge, R. Pitschke, S. Siegel and C. Li are acknowledged for technical assistance with electron microscopy and at the synchrotron. F. Nudelman helped prepare cryo-TEM samples. We thank E. Zolotoyabko, J. De Yoreo and M. Antonietti for discussions. This research was supported in D.F’s laboratory by the Max Planck Society, and a starting grant from the ERC (Project MB2, no. 256915).

Author information

Authors and Affiliations

Authors

Contributions

J.B. and C.L.C. carried out precipitation experiments. J.B. performed X-ray diffraction, TEM, analysed data and wrote the manuscript. P.H.H.B. performed cryo-TEM. A.D. carried out ferrihydrite experiments, performed cryo-TEM and analysed data. P.F. and J.B. developed the model. P.F., N.A.J.M.S. and D.F. supervised the project, analysed data and wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Damien Faivre.

Ethics declarations

Competing interests

Max Planck Innovation has applied for the following patent: J. Baumgartner & D. Faivre, Process for preparing magnetite or maghemite nanoparticles with controlled size using mild conditions, international patent’s application number WO2010EP03983 priority date July 1st, 2010.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1390 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baumgartner, J., Dey, A., Bomans, P. et al. Nucleation and growth of magnetite from solution. Nature Mater 12, 310–314 (2013). https://doi.org/10.1038/nmat3558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3558

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing