Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Domain wall depinning governed by the spin Hall effect

Abstract

Perpendicularly magnetized materials have attracted significant interest owing to their high anisotropy, which gives rise to extremely narrow, nanosized domain walls. As a result, the recently studied current-induced domain wall motion (CIDWM) in these materials promises to enable a new class of data, memory and logic devices1,2,3,4,5. Here we propose the spin Hall effect as an alternative mechanism for CIDWM. We are able to carefully tune the net spin Hall current in depinning experiments on Pt/Co/Pt nanowires, offering unique control over CIDWM. Furthermore, we determine that the depinning efficiency is intimately related to the internal structure of the domain wall, which we control by the application of small fields along the nanowire. This manifestation of CIDWM offers an attractive degree of freedom for manipulating domain wall motion by charge currents, and sheds light on the existence of contradicting reports on CIDWM in perpendicularly magnetized materials6,7,8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization dynamics induced by the SHE.
Figure 2: Domain wall depinning experiment.
Figure 3: Depinning efficiency as a function of Hx field, for Pt (x nm)/Co (0.5 nm)/Pt (y nm).

Similar content being viewed by others

References

  1. Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008).

    Article  CAS  Google Scholar 

  2. Parkin, S. S. P. Shiftable magnetic shift register and method of using the same. US patent 6834005 (2004).

  3. Honjo, H. et al. Domain-wall-motion cell with perpendicular anisotropy wire and in-plane magnetic tunneling junctions. J. Appl. Phys. 111, 07C903 (2012).

    Article  Google Scholar 

  4. Allwood, D. A. et al. Magnetic domain wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Perpendicular-magnetic-anisotropy CoFeB racetrack memory. J. Appl. Phys. 111, 093925 (2012).

    Article  Google Scholar 

  6. Miron, I. M. et al. Domain wall spin torquemeter. Phys. Rev. Lett. 102, 1–4 (2009).

    Article  Google Scholar 

  7. Moore, T. A. et al. High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl. Phys. Lett. 93, 262504 (2008).

    Article  Google Scholar 

  8. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  9. Kim, K-J. et al. Electric control of multiple domain walls in Pt/Co/Pt nanotracks with perpendicular magnetic anisotropy. Appl. Phys. Express 3, 083001 (2010).

    Article  Google Scholar 

  10. Heinen, J. et al. Current-induced domain wall motion in Co/Pt nanowires: Separating spin torque and Oersted-field effects. Appl. Phys. Lett. 96, 202510 (2010).

    Article  Google Scholar 

  11. Lavrijsen, R. et al. Asymmetric Pt/Co/Pt-stack induced sign-control of current-induced magnetic domain-wall creep. Appl. Phys. Lett. 100, 262408 (2012).

    Article  Google Scholar 

  12. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 1–4 (2004).

    Google Scholar 

  13. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  14. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in thin metallic films. J. Appl. Phys. 55, 1954–1957 (1984).

    Article  CAS  Google Scholar 

  15. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  16. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    Google Scholar 

  17. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  18. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  19. Demidov, V. E., Urazhdin, S., Edwards, E. R. J. & Demokritov, S. O. Wide-range control of ferromagnetic resonance by spin Hall effect. Appl. Phys. Lett. 99, 172501 (2011).

    Article  Google Scholar 

  20. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  21. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  22. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  23. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  24. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Burhman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  25. Seo, S-M., Kim, K-W., Ryu, J., Lee, H-W. & Lee, K-J. Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect. Appl. Phys. Lett. 101, 022405 (2012).

    Article  Google Scholar 

  26. Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 1–5 (2012).

    Google Scholar 

  27. Liu, L., Burhman, R. A. & Ralph, D. C. Review and analysis of measurements of the spin Hall effect in platinum. Preprint at http://arxiv.org/abs/1111.3702v3 (2012).

  28. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  29. Franken, J. H. et al. Precise control of domain wall injection and pinning using helium and gallium focused ion beams. J. Appl. Phys. 109, 07D504 (2011).

    Article  Google Scholar 

  30. Koyama, T. et al. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Mater. 10, 194–197 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). E.M. acknowledges support from the Swiss National Science Foundation (SNSF), Grant No. PBELP2-130894.

Author information

Authors and Affiliations

Authors

Contributions

P.P.J.H., E.M., J.H.F. and R.L. contributed to the design of the experiment. P.P.J.H. carried out the experiment with support from E.M. and J.H.F. The manuscript was prepared by P.P.J.H., together with E.M. and J.H.F., and H.J.M.S. and B.K. supervised the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to P. P. J. Haazen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haazen, P., Murè, E., Franken, J. et al. Domain wall depinning governed by the spin Hall effect. Nature Mater 12, 299–303 (2013). https://doi.org/10.1038/nmat3553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing