Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant negative linear compressibility in zinc dicyanoaurate

Abstract

The counterintuitive phenomenon of negative linear compressibility (NLC) is a highly desirable but rare property exploitable in the development of artificial muscles1, actuators2 and next-generation pressure sensors3. In all cases, material performance is directly related to the magnitude of intrinsic NLC response. Here we show the molecular framework material zinc(II) dicyanoaurate(I), Zn[Au(CN)2]2, exhibits the most extreme and persistent NLC behaviour yet reported: under increasing hydrostatic pressure its crystal structure expands in one direction at a rate that is an order of magnitude greater than both the typical contraction observed for common engineering materials4 and also the anomalous expansion in established NLC candidates3. This extreme behaviour arises from the honeycomb-like structure of Zn[Au(CN)2]2 coupling volume reduction to uniaxial expansion5, and helical Au…Au ‘aurophilic’ interactions6 accommodating abnormally large linear strains by functioning as supramolecular springs.

This is a preview of subscription content, access via your institution

Access options

Figure 1: The β-quartz-like framework structure of Zn[Au(CN)2]2 functions as a ‘molecular honeycomb’ to give giant negative linear compressibility.
Figure 2: The compressibility of Zn[Au(CN)2]2 is quantified by the variation in crystallographic unit-cell parameters.
Figure 3: Compressibility enhancement in Zn[Au(CN)2]2 via ‘spring’-like deformations.
Figure 4: Relationship between the ambient (I) and high-pressure (II) phases of Zn[Au(CN)2]2.

Similar content being viewed by others

References

  1. Aliev, A. E. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323, 1575–1578 (2009).

    Article  CAS  Google Scholar 

  2. Spinks, G. M. et al. Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728–1731 (2002).

    Article  CAS  Google Scholar 

  3. Baughman, R., Stafstrom, S., Cui, C. & Dantas, S. Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998).

    Article  CAS  Google Scholar 

  4. Newnham, R. E. Properties of Materials (Oxford Univ. Press, 2005).

    Google Scholar 

  5. Grima, J., Attard, D., Caruana-Gauci, R. & Gatt, R. Negative linear compressibility of hexagonal honeycombs and related systems. Scr. Mater. 65, 565–568 (2011).

    Article  CAS  Google Scholar 

  6. Schmidbauer, H. The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications. Gold Bull. 33, 3–10 (2000).

    Article  Google Scholar 

  7. Zhang, H. L. et al. Static equation of state of bcc iron. Phys. Rev. B 82, 132409 (2010).

    Article  Google Scholar 

  8. McCann, D. R., Cartz, L., Schmunk, R. E. & Harker, Y. D. Compressibility of hexagonal selenium by X-ray and neutron diffraction. J. Appl. Phys. 43, 1432–1436 (1972).

    Article  CAS  Google Scholar 

  9. Lakes, R. S. Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987).

    Article  CAS  Google Scholar 

  10. Evans, K. E., Nkansah, M. A., Hutchinson, I. J. & Rogers, S. C. Molecular network design. Nature 353, 124 (1991).

    Article  CAS  Google Scholar 

  11. Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nature Mater. 10, 823–837 (2011).

    Article  CAS  Google Scholar 

  12. O’Reilly, J. C., Ritter, D. A. & Carrier, D. R. Hydrostatic locomotion in a limbless tetrapod. Nature 386, 269–272 (1997).

    Article  Google Scholar 

  13. Fortes, A. D., Suard, E. & Knight, K. S. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331, 742–746 (2011).

    Article  CAS  Google Scholar 

  14. Li, W. et al. Negative linear compressibility of a metal-organic framework. J. Am. Chem. Soc. 134, 11940–11943 (2012).

    Article  CAS  Google Scholar 

  15. Ogborn, J. M., Collings, I. E., Moggach, S. A., Thompson, A. L. & Goodwin, A. L. Supramolecular mechanics in a metal-organic framework. Chem. Sci. 3, 3011–3017 (2012).

    Article  CAS  Google Scholar 

  16. Shepherd, H. J. et al. Antagonism between extreme negative linear compression and spin crossover in [Fe(dpp)2(NCS)2]·py. Angew. Chem. Int. Ed. 51, 3910–3914 (2012).

    Article  CAS  Google Scholar 

  17. Cairns, A. B., Thompson, A. L., Tucker, M. G., Haines, J. & Goodwin, A. L. Rational design of materials with extreme negative compressibility: Selective soft-mode frustration in KMn[Ag(CN)2]3 . J. Am. Chem. Soc. 134, 4454–4456 (2012).

    Article  CAS  Google Scholar 

  18. Lakes, R. & Wojciechowski, K. W. Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi B 245, 545–551 (2008).

    Article  CAS  Google Scholar 

  19. Gatt, R. & Grima, J. N. Negative compressibility. Phys. Status Solidi Rapid Res. Lett. 2, 236–238 (2008).

    Article  CAS  Google Scholar 

  20. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. Nature Mater. 11, 608–613 (2012).

    Article  CAS  Google Scholar 

  21. Sears, D. R. & Klug, H. P. Density and expansivity of solid xenon. J. Chem. Phys. 37, 3002–3006 (1962).

    Article  CAS  Google Scholar 

  22. Hoskins, B. F., Robson, R. & Scarlett, N. V. Y. Six interpenetrating quartz-like nets in the structure of ZnAu2(CN)4 . Angew. Chem. Int. Ed. 34, 1203–1204 (1995).

    Article  CAS  Google Scholar 

  23. Katz, M. J., Ramnial, T., Yu, H-Z. & Leznoff, D. B. Polymorphism of Zn[Au(CN)2]2 and Its luminescent sensory response to NH3 vapor. J. Am. Chem. Soc. 130, 10662–10673 (2008).

    Article  CAS  Google Scholar 

  24. Goodwin, A. L., Kennedy, B. J. & Kepert, C. J. Thermal expansion matching via framework flexibility in zinc dicyanometallates. J. Am. Chem. Soc. 131, 6334–6335 (2009).

    Article  CAS  Google Scholar 

  25. O’Grady, E. & Kaltsoyannis, N. Does metallophilicity increase or decrease down group 11? Computational investigations of [Cl–M–PH3]2 (M = Cu, Ag, Au, [111]). Phys. Chem. Chem. Phys. 6, 680–687 (2004).

    Article  Google Scholar 

  26. Cliffe, M. J. & Goodwin, A. L. PASCal: A principal-axis strain calculator for thermal expansion and compressibility determination. J. Appl. Crystallogr. 45, 1321–1329 (2012).

    Article  CAS  Google Scholar 

  27. Chapman, K. W. & Chupas, P. J. Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. J. Am. Chem. Soc. 129, 10090–10091 (2007).

    Article  CAS  Google Scholar 

  28. Korčok, J. L., Katz, M. J. & Leznoff, D. B. Impact of metallophilicity on colossal positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers. J. Am. Chem. Soc. 131, 4866–4871 (2009).

    Article  Google Scholar 

  29. Goodwin, A. L., Keen, D. A. & Tucker, M. G. Large negative linear compressibility of Ag3[Co(CN)6]. Proc. Natl Acad. Sci. USA 105, 18708–18713 (2008).

    Article  CAS  Google Scholar 

  30. Kier, W. M. & Smith, K. K. Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zool. J. Linn. Soc. 83, 307–324 (1985).

    Article  Google Scholar 

  31. Sun, J. et al. QMOF-1 and QMOF-2: Three-dimensional metal–organic open frameworks with a quartzlike topology. Angew. Chem. Int. Ed. 41, 4471–4473 (2002).

    Article  CAS  Google Scholar 

  32. Klotz, S., Chervin, J-C., Munsch, P. & Marchand, G. L. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D 42, 075413 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

A.B.C. and A.L.G. acknowledge financial support from the EPSRC (EP/G004528/2) and the ERC (Grant Ref: 279705), and are grateful to R. I. Cooper and P. J. Saines (Oxford) for assistance. J.H. thanks H. Shepherd, G. Molnar (LCC, Toulouse), D. Maurin (L2C), D. Bourgogne (ICGM), S. Klotz (IMPMC, Paris), K. Murato (Osaka) and D. Granier (ICGM) for technical assistance, and the ANR for financial support (Contract ANR-09-BLAN-0018-01).

Author information

Authors and Affiliations

Authors

Contributions

A.B.C., J.H. and A.L.G. conceived the study; A.B.C. made the sample; A.B.C., J.C., C.L., J.R., A.v.d.L., A.L.T, V.D., J.H. and A.L.G. performed the experiments; A.B.C., L.P., J.H. and A.L.G. analysed and interpreted the data; A.B.C. and A.L.G. wrote the paper.

Corresponding author

Correspondence to Andrew L. Goodwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairns, A., Catafesta, J., Levelut, C. et al. Giant negative linear compressibility in zinc dicyanoaurate. Nature Mater 12, 212–216 (2013). https://doi.org/10.1038/nmat3551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing