Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-invasive determination of the complete elastic moduli of spider silks

Abstract

Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress–strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental Brillouin scattering data of spider silk.
Figure 2: Non-invasive spatial map of mechanical properties of spider web.
Figure 3: Stiffness changes in N. clavipes silk with supercontraction.

References

  1. 1

    Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behavior of spider silk yields robust webs. Nature 482, 72–76 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Mater. 9, 359–367 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Vollrath, F. Silk evolution untangled. Nature 466, 319 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Vollrath, F. Spider webs and silks. Sci. Am. 266, 70–76 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Work, R. W. Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae). J. Exp. Biol. 118, 379–404 (1985).

    Google Scholar 

  6. 6

    Blackledge, T. A., Swindeman, J. E. & Hayashi, C. Y. Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J. Exp. Biol. 208, 1937–1949 (2005).

    Article  Google Scholar 

  7. 7

    Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  8. 8

    Blackledge, T. A., Cardullo, R. A. & Hayashi, C. Y. Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk. Invertebr. Biol. 124, 165–173 (2005).

    Article  Google Scholar 

  9. 9

    Liu, Y., Shao, Z. & Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nature Mater. 4, 901–905 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Emile, O., Le Floch, A. & Vollrath, F. Biopolymers: Shape memory in spider draglines. Nature 440, 621 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Eisoldt, L., Smith, A. & Scheibel, T. Decoding the secrets of spider silk. Mater. Today 14, 80–86 (March, 2011).

    CAS  Article  Google Scholar 

  12. 12

    Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Speziale, S. et al. Sound velocity and elasticity of tetragonal lysozyme crystals by Brillouin spectroscopy. Biophys. J. 85, 3202–3213 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Randall, S. J. & Vaughan, J. M. Brillouin scattering in systems of biological significance [and discussion]. Phil. Trans. R. Soc. Lond. A 293, 341–348 (1979).

    CAS  Article  Google Scholar 

  15. 15

    Cusack, S. & Miller, A. Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol. 135, 39–51 (1979).

    CAS  Article  Google Scholar 

  16. 16

    Harley, R., James, D., Miller, A. & White, J. W. Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977).

    CAS  Article  Google Scholar 

  17. 17

    Berovic, N., Thomas, N., Thornhill, R. A. & Vaughan, J. M. Observation of Brillouin scattering from single muscle fibres. Eur. Biophys. J. 17, 69–74 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Koski, K. J. & Yarger, J. L. Brillouin imaging. Appl. Phys. Lett. 87, 061903 (2005).

    Article  Google Scholar 

  19. 19

    Arecchi, F. T. et al. Laser Handbook (North-Holland, 1972).

    Google Scholar 

  20. 20

    Saravanan, D. Spider silk—structure, properties and spinning. J. Text. Apparel Technol. Manage. 5, 1–20 (2006).

    Google Scholar 

  21. 21

    Work, R. W. Dimensions, birefringences, and force-elongation behavior of major and minor ampullate silk fibers from orb-web-spinning spiders—the effects of wetting on these properties. Tex. Res. J. 47, 650–662 (1977).

    Article  Google Scholar 

  22. 22

    Zemlin, J. C. Technical Report 69-29-CM: A Study of the Mechanical Behavior of Spider Silks (Collaborative Research, 1968).

    Google Scholar 

  23. 23

    Vincent, J. F. V. Structural Materials 1–378 (Macmillan, 1982).

    Google Scholar 

  24. 24

    Fossey, S. A. & Kaplan, D. L. in Polymer Data Handbook (ed. Mark, J. E.) (Oxford Univ. Press, 1999).

    Google Scholar 

  25. 25

    Little, D. J. & Kane, D. M. Hybrid immersion-polarization method for measuring birefringence applied to spider silks. Opt. Lett. 36, 4098–4100 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Ko, F. K. & Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5, 780–785 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Boutry, C., Rezac, M. & Blackledge, T. A. Plasticity in major ampullate silk production in relation to spider phylogeny and ecology. PLOS ONE 6, e22467 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Heim, M., Keerl, D. & Scheibel, T. Spider silk: From soluble protein to extraordinary fiber. Angew. Chem. Int. Ed. 48, 3584–3596 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Moore, A. M. F. & Tran, K. Material properties of cobweb silk from the black widow spider Latrodectus hesperus. Int. J. Biol. Macromol. 24, 277–282 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Molecular and nanostructural mechanisms of deformation, strength, and toughness of spider silk fibrils. Nano Lett. 10, 2626–2634 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Denny, M. The physical properties of spider’s silk and their role in the design of orb-webs. J. Exp. Biol. 65, 483–506 (1976).

    Google Scholar 

  32. 32

    Gosline, J. M., Demont, M. E. & Denny, M. W. The structure and properties of spider silk. Endeavour 10, 37–43 (1986).

    Article  Google Scholar 

  33. 33

    Vollrath, F. Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Sahni, V., Blackledge, T. A. & Dhinojwala, A. Viscoelastic solids explain spider web stickiness. Nature Commun. 1, 1–4 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Blackledge, T. A., Summers, A. P. & Hayashi, C. Y. Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108, 41–46 (2005).

    Article  Google Scholar 

  36. 36

    Sahni, V., Blackledge, T. A. & Dhinojwala, A. Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci. Rep. 1, 1–41 (2011).

    Article  Google Scholar 

  37. 37

    Xu, M. & Lewis, R. M. Structure of a protein superfiber: Spider dragline silk. Proc. Natl Acad. Sci. USA 87, 7120–7124 (1990).

    CAS  Article  Google Scholar 

  38. 38

    Bell, F. I., McEwen, I. J. & Viney, C. Fibre science: Supercontraction stress in wet spider dragline. Nature 416, 37 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Blackledge, T. A. et al. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk. J. Exp. Biol. 212, 1981–1989 (2009).

    Article  Google Scholar 

  40. 40

    Van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    CAS  Article  Google Scholar 

  42. 42

    Eles, P.T. & Michal, C. A. Strain dependent local phase transitions observed during controlled supercontraction reveal mechanisms in spider silk. Macromolecules 37, 1342–1345 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Boutry, C. & Blackledge, T. A. Evolution of supercontraction in spider silk: structure function relationship from tarantulas to orb-weavers. J. Exp. Biol. 213, 3505–3514 (2010).

    Article  Google Scholar 

  44. 44

    Guinea, G. V., Elices, M., Prez-Rigueiro, J. & Plaza, G. R. Stretching of supercontracted fibers: A link between spinning and the variability of spider silk. J. Exp. Biol. 208, 25–30 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Savage, K. N., Guerette, P. A. & Gosline, J. M. Supercontraction stress in spider webs. Biomacromolecules 5, 675–679 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Work, R. W. A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (Araneae). J. Arachnol. 9, 299–308 (1981).

    Google Scholar 

  47. 47

    Fossey, S. A. & Kaplan, D. L. Polymer Data Handbook 970–974 (Oxford Univ. Press, 1999).

    Google Scholar 

  48. 48

    Work, R. W. & Emerson, P. D. J. An apparatus and technique for the forcible silking of spiders. J. Arachnol. 10, 1–10 (1982).

    Google Scholar 

  49. 49

    Fedorov, F. I. Theory of Elastic Waves in Crystals (Plenum, 1958).

    Google Scholar 

  50. 50

    Nye, J. F. Physical Properties of Crystals 144–145 (Clarendon, 1957).

    Google Scholar 

Download references

Acknowledgements

J.L.Y. would like to acknowledge spider silk research support from the Department of Defense, AFOSR (FA9550-10-1-0275) and the US National Science Foundation (CHE-1011937).

Author information

Affiliations

Authors

Contributions

K.J.K. and J.L.Y. designed the experiments and wrote this manuscript. P.A. and J.L.Y. provided samples. K.J.K., P.A., K.M. and J.L.Y. performed the experiments. K.J.K. analysed the results.

Corresponding author

Correspondence to Jeffery L. Yarger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 660 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koski, K., Akhenblit, P., McKiernan, K. et al. Non-invasive determination of the complete elastic moduli of spider silks. Nature Mater 12, 262–267 (2013). https://doi.org/10.1038/nmat3549

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing