Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection

This article has been updated


The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov–Bohm effect1 and the Berry phase2. By manipulating the phase of light one can create ’twisted’ photons3,4, vortex knots5 and dislocations6 which has led to the emergence of the field of singular optics relying on abrupt phase changes7. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene8 and binding of streptavidin–biotin9, we demonstrate an areal mass sensitivity at a level of fg mm−2 and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Singular phase and topologically protected darkness.
Figure 2: Hydrogenation of graphene placed on top of a singular-phase nanostructure.
Figure 3: Evaluation of sensitivity for singular-phase plasmonic detectors with the help of graphene hydrogenation.
Figure 4: Biosensing with a plasmonic metamaterial.

Change history

  • 06 February 2013

    In the version of this Letter originally published online, in the bottom inset in Fig. 1c, the first three numbers on the y axis (reading from bottom to top) should have read 0, 15 and 30. This error has been corrected in all versions of the Letter.


  1. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  Google Scholar 

  2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. Math. Phys. Sci. 392, 45–57 (1984).

    Article  Google Scholar 

  3. Allen, L., Padgett, M. J., Babiker, M. & Wolf, E. Progress in Optics Vol. 39, 291–372 (Elsevier, 1999).

    Google Scholar 

  4. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    CAS  Article  Google Scholar 

  5. Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical vortex knots. Nature Phys. 6, 118–121 (2010).

    CAS  Article  Google Scholar 

  6. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A. Math. Phys. Sci. 336, 165–190 (1974).

    Article  Google Scholar 

  7. Yu, N. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    CAS  Article  Google Scholar 

  8. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    CAS  Article  Google Scholar 

  9. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    CAS  Article  Google Scholar 

  10. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    CAS  Article  Google Scholar 

  11. Kabashin, A. V., Patskovsky, S. & Grigorenko, A. N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express 17, 21191–21204 (2009).

    CAS  Article  Google Scholar 

  12. Prasad, P. N. Introduction to Biophotonics (Wiley, 2003).

    Book  Google Scholar 

  13. Cooper, M. A. Optical biosensors in drug discovery. Nature Rev. Drug Discov. 1, 515–528 (2002).

    CAS  Article  Google Scholar 

  14. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nature Methods 5, 591–596 (2008).

    CAS  Article  Google Scholar 

  15. Liedberg, B., Nylander, C. & Lundström, I. Biosensing with surface plasmon resonance—how it all started. Biosensors Bioelectron. 10, i–ix (1995).

    CAS  Article  Google Scholar 

  16. Haes, A. J. & Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002).

    CAS  Article  Google Scholar 

  17. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Article  Google Scholar 

  18. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Article  Google Scholar 

  19. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    CAS  Article  Google Scholar 

  20. Johansen, K., Stålberg, R., Lundström, I. & Liedberg, B. Surface plasmon resonance: Instrumental resolution using photo diode arrays. Meas. Sci. Technol. 11, 1630 (2000).

    CAS  Article  Google Scholar 

  21. Dahlin, A. B., Tegenfeldt, J. O. & Höök, F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006).

    CAS  Article  Google Scholar 

  22. Grigorenko, A. N., Nikitin, P. I. & Kabashin, A. V. Phase jumps and interferometric surface plasmon resonance imaging. Appl. Phys. Lett. 75, 3917–3919 (1999).

    CAS  Article  Google Scholar 

  23. Hoenig, D. & Moebius, D. Direct visualization of monolayers at the air–water interface by Brewster angle microscopy. J. Phys. Chem. 95, 4590–4592 (1991).

    CAS  Article  Google Scholar 

  24. Kabashin, A. V. & Nikitin, P. I. Interferometer based on a surface-plasmon resonance for sensor applications. Quant. Electron. 27, 653–654 (1997).

    Article  Google Scholar 

  25. Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

    CAS  Article  Google Scholar 

  26. Markel, V. A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B 38, L115–L121 (2005).

    CAS  Article  Google Scholar 

  27. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

    CAS  Article  Google Scholar 

  28. Auguie, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article  Google Scholar 

  29. Chu, Y., Schonbrun, E., Yang, T. & Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).

    Article  Google Scholar 

  30. Kravets, V. G., Schedin, F., Kabashin, A. V. & Grigorenko, A. N. Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Opt. Lett. 35, 956–958 (2010).

    CAS  Article  Google Scholar 

  31. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78, 205405 (2008).

    Article  Google Scholar 

  32. Hales, T. C. The Jordan curve theorem, formally and informally. Am. Math. Monthly 114, 882–894 (2007).

    Article  Google Scholar 

  33. Canciado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  Google Scholar 

Download references


We are grateful to the SAIT GRO Program, European Commission (Metachem), and French National Research Agency (ANR).

Author information

Authors and Affiliations



A.N.G. and A.V.K. conceived the idea. V.G.K., F.S., R.J., R.V.G. and D.A. made the devices. V.G.K., L.B., B.T., K.S.N., A.N.G. and A.V.K. modified samples and performed measurements. All the authors contributed to discussion of the project. A.K.G., K.S.N. and A.N.G. guided the project. A.N.G., A.V.K., K.S.N. and A.K.G. wrote the manuscript with revisions from all authors.

Corresponding authors

Correspondence to A. V. Kabashin or A. N. Grigorenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kravets, V., Schedin, F., Jalil, R. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature Mater 12, 304–309 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing