Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging the dynamics of individually adsorbed molecules

Abstract

Although noise is observed in many experiments, it is rarely used as a source of information. However, valuable information can be extracted from noisy signals. The motion of particles on a surface induced, for example, by thermal activation1,2,3,4 or by the interaction with the tip of a scanning tunnelling microscope5,6 may lead to fluctuations or switching of the tunnelling current3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21. The analysis of these processes gives insight into dynamics on a single atomic or molecular level. Unfortunately, scanning tunnelling microscopy (STM) is not a useful tool to study dynamics in detail, as it is an intrinsically slow technique. Here, we show that this problem can be solved by providing a full real-time characterization of random telegraph noise in the current signal. The hopping rate, the noise amplitude and the relative occupation of the involved states are measured as a function of the tunnelling parameters, providing spatially resolved maps. In contrast to standard STM, our technique gives access to transiently populated states revealing an electron-driven hindered rotation between the equilibrium and two metastable positions of an individually adsorbed molecule. The new approach yields a complete characterization of copper phthalocyanine molecules on Cu(111), ranging from dynamical processes on surfaces to the underlying electronic structure on the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the frustrated rotation of CuPc molecules on Cu(111) and its detection by SNM.
Figure 2: SNM: CuPc on Cu(111).
Figure 3: SNS: CuPc on Cu(111).
Figure 4: Adiabatic PES and spatially resolved map of inelastic excitation.

Similar content being viewed by others

References

  1. Gimzewski, J. K. et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).

    Article  CAS  Google Scholar 

  2. Stöhr, M. et al. Direct observation of a hindered eccentric rotation of an individual molecule: Cu-phthalocyanine on C60 . Phys. Rev. B 65, 033404 (2001).

    Article  Google Scholar 

  3. Gao, L. et al. Constructing an array of anchored single-molecule rotors on gold surfaces. Phys Rev. Lett. 101, 197209 (2008).

    Article  CAS  Google Scholar 

  4. Kühne, D. et al. Rotational and constitutional dynamics of caged supramolecules. Proc. Natl Acad. Sci. USA 107, 21332–21336 (2010).

    Article  Google Scholar 

  5. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunneling microscope. Nature 352, 600–603 (1991).

    Article  CAS  Google Scholar 

  6. Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled room-temperature positioning of single molecules: Molecular flexure and motion. Science 271, 181–184 (1996).

    Article  CAS  Google Scholar 

  7. Stipe, B. C., Rezaei, M. A. & Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 279, 1907–1909 (1998).

    Article  CAS  Google Scholar 

  8. Lauhon, M. A. & Ho, W. Control and characterization of a unimolecular reaction. Phys. Rev. Lett. 84, 1527–1530 (2000).

    Article  CAS  Google Scholar 

  9. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  10. Stroscio, J. A. & Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 306, 242–247 (2004).

    Article  CAS  Google Scholar 

  11. Iancu, V. & Hla, S-W. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-A molecules. Proc. Natl Acad. Sci. USA 103, 13718–13718 (2006).

    Article  CAS  Google Scholar 

  12. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  13. Henningsen, N. et al. Inducing the rotation of a single phenyl ring with tunneling electrons. J. Phys. Chem. C 111, 14843–14848 (2007).

    Article  CAS  Google Scholar 

  14. Wang, Y., Kröger, J., Berndt, R. & Hofer, A. Pushing and pulling a Sn ion through an adsorbed phthalocyanine molecule. J. Am. Chem. Soc. 131, 3639–3643 (2009).

    Article  CAS  Google Scholar 

  15. Nacci, C. et al. Current versus temperature-induced switching in a single-molecule tunnel junction: 1,5 cyclooctadiene on Si(001). Nano Lett. 9, 2996–3000 (2009).

    Article  CAS  Google Scholar 

  16. Karacuban, H. et al. Substrate-induced symmetry reduction of CuPc on Cu(111): An LT-STM study. Surf. Sci. 603, L39–L43 (2009).

    Article  CAS  Google Scholar 

  17. Tierney, H. L. et al. Mode-selective electrical excitation of a molecular rotor. Chem. Eur. J. 15, 9678 (2009).

    Article  CAS  Google Scholar 

  18. Simic-Milosevic, V., Meyer, J. & Morgenstern, K. Chirality change of chloronitrobenzene on Au(111) induced by inelastic electron tunneling. Angew. Chem. Int. Ed. 48, 4061–4064 (2009).

    Article  CAS  Google Scholar 

  19. Van Houselt, A. & Zandvliet, H. J. W. Colloquium: Time-resolved scanning tunneling microscopy. Rev. Mod. Phys. 82, 1593–1605 (2010).

    Article  Google Scholar 

  20. Liu, Q. et al. Identifying multiple configurations of complex molecules in dynamical processes: Time resolved tunneling spectroscopy and density functional theory calculation. Phys. Rev. Lett. 104, 166101 (2010).

    Article  CAS  Google Scholar 

  21. Wang, W. et al. Electron stimulation of internal torsion of a surface-mounted molecular rotor. ACS Nano 4, 4929–4935 (2010).

    Article  CAS  Google Scholar 

  22. Bartels, L., Wang, F., Möller, D., Knoesel, E. & Heinz, T. F. Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305, 648–651 (2004).

    Article  CAS  Google Scholar 

  23. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  24. Hla, S-W., Braun, K-F., Wassermann, B. & Rieder, K-H. Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Phys. Rev. Lett. 93, 208302 (2004).

    Article  Google Scholar 

  25. Heinrich, B. W. et al. Direct observation of the tunneling channels of a chemisorbed molecule. J. Phys. Chem. Lett. 1, 1517–1523 (2010).

    Article  CAS  Google Scholar 

  26. Teillet-Billy, D., Gauyacq, J-P. & Persson, M. Molecular rotation induced by inelastic electron tunneling. Phys. Rev. B 62, R13306–R13309 (2000).

    Article  CAS  Google Scholar 

  27. Lorente, N. & Gauyacq, J-P. Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys. Rev. Lett. 103, 176601 (2009).

    Article  Google Scholar 

  28. Abram, R. A. & Herzenberg, A. Rotational excitation of H2 by slow electrons. Chem. Phys. Lett. 3, 187–190 (1969).

    Article  CAS  Google Scholar 

  29. Stadtmüller, B., Kröger, I., Reinert, F. & Kumpf, C. Submonolayer growth of CuPc on noble metal surfaces. Phys. Rev. B 83, 085416 (2011).

    Article  Google Scholar 

  30. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter. 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft through the SFB 616 Energy Dissipation at Surfaces is gratefully acknowledged. M.C.C. and A.S. thank the Studienstiftung des deutschen Volkes for support. D. Utzat is gratefully acknowledged for designing and constructing the electronics.

Author information

Authors and Affiliations

Authors

Contributions

J.S., M.C.C., A.S., H.K. and C.A.B. performed all experimental steps including the assembly of the low-temperature scanning tunnelling microscope, the tip and sample preparation, measurements and data analysis; J.S. and N.L. performed DFT calculations and N.L. and J-P.G. worked on the theory on rotational excitation. R.M. designed the low-temperature STM and the SNM electronics. J.S., M.C.C., C.A.B. and R.M. co-wrote the paper with N.L. and J-P.G. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Rolf Möller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffert, J., Cottin, M., Sonntag, A. et al. Imaging the dynamics of individually adsorbed molecules. Nature Mater 12, 223–227 (2013). https://doi.org/10.1038/nmat3527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing