Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photonic topological insulators

Abstract

Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals—superlattices of metamaterials with judiciously designed properties—provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wave propagation in a 2D PTI.
Figure 2: One-way spin-polarized transport of photonic edge states.
Figure 3: Excitation of surface waves by a point dipole source at the interface between topologically trivial and non-trivial photonic insulators.
Figure 4: Non-obstructing large photon antennas due to spin-cloaking.

Similar content being viewed by others

References

  1. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  3. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  4. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  5. Roy, R. Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B 79, 195321 (2009).

    Article  Google Scholar 

  6. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  7. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  8. König, M. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  9. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  10. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  11. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3, Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  12. Lindner, N. l. H., Refael, G. & Galitski, V. Floquet topological insulators in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).

    Article  CAS  Google Scholar 

  13. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  14. Wang, Z., Chong, Y., Joannopoulos, J. & Soljaćić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    Article  Google Scholar 

  15. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    Article  CAS  Google Scholar 

  16. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  17. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  18. Ulf, L. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  Google Scholar 

  19. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  20. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nature Mater. 9, 387–396 (2010).

    Article  CAS  Google Scholar 

  21. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Phys. Usp. 10, 509–514 (1968).

    Article  Google Scholar 

  22. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  23. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  24. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  25. Fang, K., Yu, Z. & Fan, S. Microscopic theory of photonic one-way edge mode. Phys. Rev. B 84, 075477 (2011).

    Article  Google Scholar 

  26. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljaćić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  27. Poo, Y., Wu, R., Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011).

    Article  Google Scholar 

  28. Zharov, A. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003).

    Article  Google Scholar 

  29. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  CAS  Google Scholar 

  30. Poutrina, E., Huang, D. & Smith, D. R. Analysis of nonlinear electromagnetic metamaterials. New J. Phys. 12, 093010 (2010).

    Article  Google Scholar 

  31. Maciejko, J., Hughes, T. L. & Zhang, S-C. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys. 2, 31–53 (2011).

    Article  CAS  Google Scholar 

  32. Kong, J. A. Theorems of bianisotropic media. Proc. IEEE 60, 1036–1046 (1972).

    Article  Google Scholar 

  33. Serdyukov, A. N., Semchenko, I. V., Tretyakov, S. A. & Sihvola, A. Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

    Google Scholar 

  34. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors, and enhanced non-linear phenomena. Microw. Theory Technol. 47, 2075–2084 (1999).

    Article  Google Scholar 

  35. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  36. Marqués, R., Medina, F. & Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440 (2002).

    Article  Google Scholar 

  37. Rill, M. S. et al. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. Opt. Lett. 34, 19–21 (2009).

    Article  CAS  Google Scholar 

  38. Li, Z., Aydin, K. & Ozbay, E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Phys. Rev. E 79, 026610 (2009).

    Article  Google Scholar 

  39. Saadoun, M. M. I. & Engheta, N. A reciprocal phase shifter using novel pseudochiral or ω medium. Microw. Opt. Technol. Lett. 5, 184–188 (1992).

    Article  Google Scholar 

  40. Tretyakov, S. A., Simovski, C. R. & HudliÄŤka, M. Bianisotropic route to the realization and matching of backward-wave metamaterial slabs. Phys. Rev. B 75, 153104 (2007).

    Article  Google Scholar 

  41. Tretyakov, S. A., Mariotte, F., Simovski, C. R., Kharina, T. G. & Heliot, J-P. Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data. IEEE Trans. Antennas Propag. 44, 1006–1014 (1996).

    Article  Google Scholar 

  42. Plum, E., Schwanecke, V. A. F., Zheludev, A. S. & Chen, N. I. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).

    Article  Google Scholar 

  43. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  44. Saenz, E. et al. Modeling of spirals with equal dielectric, magnetic, and chiral susceptibilities. Electromagnetics 28, 476–493 (2008).

    Article  Google Scholar 

  45. Urzhumov, Y. A. & Shvets, G. Extreme anisotropy of wave propagation in two-dimensional photonic crystals. Phys. Rev. E 72, 026608 (2005).

    Article  Google Scholar 

  46. Haldane, F. D. M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  47. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  48. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  49. Sheng, D. N., Weng, Z. Y., Sheng, L. & Haldane, F. D. M. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B.K., S.H.M. and G.S. acknowledge financial support from the Office of Naval Research grant N00014-10-1-0929 and the NSF award PHY-0851614. A.H.M. and W.K.T. acknowledge support from DOE Division of Materials Sciences and Engineering grant DE-FG03-02ER45958. M.K. acknowledges support from ARO grant W911NF-09-1-0527 and NSF grant DMR-0955778. G.S. acknowledges enlightening communications with M. Segev.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding authors

Correspondence to Alexander B. Khanikaev or Gennady Shvets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2117 kb)

Supplementary Information

Supplementary Movie S1 (AVI 6600 kb)

Supplementary Information

Supplementary Movie S2 (AVI 6600 kb)

Supplementary Information

Supplementary Movie S3 (AVI 32813 kb)

Supplementary Information

Supplementary Movie S4 (AVI 32813 kb)

Supplementary Information

Supplementary Movie S5 (AVI 32813 kb)

Supplementary Information

Supplementary Movie S6 (AVI 32813 kb)

Supplementary Information

Supplementary Movie S7 (AVI 32813 kb)

Supplementary Information

Supplementary Movie S8 (AVI 32813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanikaev, A., Hossein Mousavi, S., Tse, WK. et al. Photonic topological insulators. Nature Mater 12, 233–239 (2013). https://doi.org/10.1038/nmat3520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3520

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing