Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cytoplasm of living cells behaves as a poroelastic material

Abstract

The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at short timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology at short timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and functional form of cellular force–relaxation.
Figure 2: Poroelastic and elastic properties change in response to changes in cell volume.
Figure 3: Changes in cell volume change cytoplasmic pore size.
Figure 4: The F-actin cytoskeleton is the main biological determinant of cellular poroelastic properties.

Similar content being viewed by others

References

  1. Hoffman, B. D. & Crocker, J. C. Cell mechanics: Dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11, 259–288 (2009).

    CAS  Google Scholar 

  2. Fletcher, D. A. & Geissler, P. L. Active biological materials. Annu. Rev. Phys. Chem. 60, 469–486 (2009).

    CAS  Google Scholar 

  3. Trepat, X., Lenormand, G. & Fredberg, J. J. Universality in cell mechanics. Soft Matter 4, 1750–1759 (2008).

    CAS  Google Scholar 

  4. Kollmannsberger, P. & Fabry, B. Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 41, 75–97 (2011).

    CAS  Google Scholar 

  5. Bausch, A. R., Möller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    CAS  Google Scholar 

  6. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    CAS  Google Scholar 

  7. Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nature Mater. 5, 636–640 (2006).

    CAS  Google Scholar 

  8. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).

    CAS  Google Scholar 

  9. Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A. & Theriot, J. A. Intracellular fluid flow in rapidly moving cells. Nature Cell Biol. 11, 1219–1224 (2009).

    CAS  Google Scholar 

  10. Bausch, A. R. & Kroy, K. A bottom-up approach to cell mechanics. Nature Phys. 2, 231–238 (2006).

    CAS  Google Scholar 

  11. Gittes, F., Schnurr, B., Olmsted, P. D., MacKintosh, F. C. & Schmidt, C. F. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79, 3286–3289 (1997).

    CAS  Google Scholar 

  12. Gardel, M. L. et al. Elastic behaviour of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  Google Scholar 

  13. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    CAS  Google Scholar 

  14. Rosenbluth, M. J., Crow, A., Shaevitz, J. W. & Fletcher, D. A. Slow stress propagation in adherent cells. Biophys. J. 95, 6052–6059 (2008).

    CAS  Google Scholar 

  15. Charras, G. T., Mitchison, T. J. & Mahadevan, L. Animal cell hydraulics. J. Cell Sci. 122, 3233–3241 (2009).

    CAS  Google Scholar 

  16. Zicha, D. et al. Rapid actin transport during cell protrusion. Science 300, 142–145 (2003).

    CAS  Google Scholar 

  17. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  Google Scholar 

  18. Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Google Scholar 

  19. De Gennes, P. G. Dynamics of entangled polymer solutions (III). Macromolecules 9, 587–598 (1976).

    CAS  Google Scholar 

  20. Mitchison, T. J., Charras, G. T. & Mahadevan, L. Seminars in Cell Developmental Biology vol. 19, 215–223 (Academic, 2008).

    Google Scholar 

  21. Dembo, M. & Harlow, F. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J. 50, 109–121 (1986).

    CAS  Google Scholar 

  22. Hu, Y., Zhao, X., Vlassak, J. J. & Suo, Z. Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010).

    Google Scholar 

  23. Kalcioglu, Z. I., Mahmoodian, R., Hu, Y., Suo, Z. & Van Vliet, K. J. From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8, 3393–3398 (2012).

    CAS  Google Scholar 

  24. Ibata, K., Takimoto, S., Morisaku, T., Miyawaki, A. & Yasui, M. Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes raman scattering microscopy. Biophys. J. 101, 2277–2283 (2011).

    CAS  Google Scholar 

  25. Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 (2009).

    CAS  Google Scholar 

  26. Zhou, E. H. et al. Universal behaviour of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

    CAS  Google Scholar 

  27. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Intracellular delivery of quantum dots for live cell labelling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    CAS  Google Scholar 

  28. Swaminathan, R., Bicknese, S., Periasamy, N. & Verkman, A. S. Cytoplasmic viscosity near the cell plasma membrane. Biophys. J. 71, 1140–1151 (1996).

    CAS  Google Scholar 

  29. Kao, H. P., Abney, J. R. & Verkman, A. S. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell Biol. 120, 175–184 (1993).

    CAS  Google Scholar 

  30. Phillips, R. J. A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys. J. 79, 3350 (2000).

    CAS  Google Scholar 

  31. Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

    CAS  Google Scholar 

  32. Moulding, D. A. et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J. Exp. Med. 204, 2213–2224 (2007).

    CAS  Google Scholar 

  33. Low, S. H., Mukhina, S., Srinivas, V., Ng, C. Z. & Murata-Hori, M. Domain analysis of α-actinin reveals new aspects of its association with F-actin during cytokinesis. Exp. Cell Res. 316, 1925–1934 (2010).

    CAS  Google Scholar 

  34. Shu, H. B. & Joshi, H. C. Gamma-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells. J. Cell Biol. 130, 1137–1147 (1995).

    CAS  Google Scholar 

  35. Werner, N. S. et al. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol. Biol. Cell 15, 990–1002 (2004).

    CAS  Google Scholar 

  36. Spagnoli, C., Beyder, A., Besch, S. & Sachs, F. Atomic force microscopy analysis of cell volume regulation. Phys. Rev. E 78, 31916 (2008).

    Google Scholar 

  37. Albrecht-Buehler, G. & Bushnell, A. Reversible compression of cytoplasm. Exp. Cell Res. 140, 173–189 (1982).

    CAS  Google Scholar 

  38. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of cultured mammalian cells. Proc. Natl Acad. Sci. USA 103, 10259–10264 (2006).

    CAS  Google Scholar 

  39. Wottawah, F. et al. Optical rheology of biological cells. Phys. Rev. Lett. 94, 98103 (2005).

    Google Scholar 

  40. Darling, E. M., Zauscher, S. & Guilak, F. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthrit. Cartilage 14, 571–579 (2006).

    CAS  Google Scholar 

  41. Moreno-Flores, S., Benitez, R., Vivanco, M. M. & Toca-Herrera, J. L. Stress relaxation and creep on living cells with the atomic force microscope: A means to calculate elastic moduli and viscosities of cell components. Nanotechnology 21, 445101 (2010).

    Google Scholar 

  42. Avril, S., Schneider, F., Boissier, C. & Li, Z. Y. In vivo velocity vector imaging and time-resolved strain rate measurements in the wall of blood vessels using MRI. J. Biomech. 44, 979–983 (2011).

    Google Scholar 

  43. Li, P. et al. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography. Phys. Med. Biol. 56, 7081–7092 (2011).

    Google Scholar 

  44. Perlman, C. E. & Bhattacharya, J. Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103, 1037–1044 (2007).

    Google Scholar 

  45. Van Citters, K. M., Hoffman, B. D., Massiera, G. & Crocker, J. C. The role of F-actin and myosin in epithelial cell rheology. Biophys. J. 91, 3946–3956 (2006).

    CAS  Google Scholar 

  46. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    CAS  Google Scholar 

  47. Mukhina, S., Wang, Y. & Murata-Hori, M. [α]-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev. Cell 13, 554–565 (2007).

    CAS  Google Scholar 

  48. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    CAS  Google Scholar 

  49. DiDonna, B. & Levine, A. J. Unfolding cross-linkers as rheology regulators in F-actin networks. Phys. Rev. E 75, 041909 (2007).

    CAS  Google Scholar 

  50. Hoffman, B. D., Massiera, G. & Crocker, J. C. Fragility and mechanosensing in a thermalized cytoskeleton model with forced protein unfolding. Phys. Rev. E 76, 051906 (2007).

    Google Scholar 

  51. Luby-Phelps, K., Castle, P. E., Taylor, D. L. & Lanni, F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl Acad. Sci. USA 84, 4910–4913 (1987).

    CAS  Google Scholar 

  52. Dix, J. A. & Verkman, A. S. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

    CAS  Google Scholar 

  53. Ando, T. & Skolnick, J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl Acad. Sci. USA 107, 18457–18462 (2010).

    CAS  Google Scholar 

  54. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

E.M. is in receipt of a Dorothy Hodgkin Postgraduate Award (DHPA) from the Engineering and Physical Sciences Research Council. L.M. thanks the MacArthur Foundation for support. G.T.C. is in receipt of a Royal Society University Research Fellowship. G.T.C., D.A.M. and A.J.T. are funded by Wellcome Trust grant (WT092825). M.F. was supported by a Human Frontier Science Program Young Investigator grant to G.T.C. The authors wish to acknowledge the UCL Comprehensive Biomedical Research Centre for generous funding of microscopy equipment. E.M. and G.T.C. thank R. Thorogate and C. Leung for technical help with the AFM set-up and Z. Wei for helpful discussions. We also gratefully acknowledge support of N. Ladommatos and W. Suen from Department of Mechanical Engineering at UCL.

Author information

Authors and Affiliations

Authors

Contributions

E.M., L.M. and G.T.C. designed the research; E.M. and L.V. performed the research with some contributions from M.F. and D.M.; E.M. analysed the data; E.M., L.V., D.A.M., A.J.T. and G.T.C. generated reagents; E.M., L.V., M.F., A.R.H., E.S. and L.M. contributed analytical tools; E.M., L.M. and G.T.C. wrote the paper.

Corresponding authors

Correspondence to L. Mahadevan or Guillaume T. Charras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1992 kb)

Supplementary Information

Supplementary Movie S1 (WMV 2677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeendarbary, E., Valon, L., Fritzsche, M. et al. The cytoplasm of living cells behaves as a poroelastic material. Nature Mater 12, 253–261 (2013). https://doi.org/10.1038/nmat3517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3517

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research