Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A scalable neuristor built with Mott memristors

Abstract

The Hodgkin–Huxley model for action potential generation in biological axons1 is central for understanding the computational capability of the nervous system and emulating its functionality. Owing to the historical success of silicon complementary metal-oxide-semiconductors, spike-based computing is primarily confined to software simulations2,3,4 and specialized analogue metal–oxide–semiconductor field-effect transistor circuits5,6,7,8. However, there is interest in constructing physical systems that emulate biological functionality more directly, with the goal of improving efficiency and scale. The neuristor9 was proposed as an electronic device with properties similar to the Hodgkin–Huxley axon, but previous implementations were not scalable10,11,12,13. Here we demonstrate a neuristor built using two nanoscale Mott memristors, dynamical devices that exhibit transient memory and negative differential resistance arising from an insulating-to-conducting phase transition driven by Joule heating. This neuristor exhibits the important neural functions of all-or-nothing spiking with signal gain and diverse periodic spiking, using materials and structures that are amenable to extremely high-density integration with or without silicon transistors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Neuristor diagram and Mott memristor device characteristics.
Figure 2: All-or-nothing response and state variable dynamics of the neuristor.
Figure 3: Experimental and simulated spike trains.

References

  1. 1

    Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    CAS  Article  Google Scholar 

  2. 2

    Herz, A. V. M., Gollisch, T., Machens, C. K. & Jaeger, D. Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science 314, 80–85 (2006).

    CAS  Article  Google Scholar 

  3. 3

    O’Reilly, R. C. Biologically based computational models of high-level cognition. Science 314, 91–94 (2006).

    Article  Google Scholar 

  4. 4

    Izhikevich, E. M. Hybrid spiking models. Phil. Tran. R. Soc. A 368, 5061–5070 (2010).

    Article  Google Scholar 

  5. 5

    Mead, C. Analog VLSI and Neural Systems (Addison-Wesley, 1989).

    Google Scholar 

  6. 6

    Rachmuth, G. & Poon, C. S. Transistor analogs of emergent iono-neuronal dynamics. HFSP J. 2, 156–166 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Brüderle, D. et al. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol. Cybernet. 104, 263–296 (2011).

    Article  Google Scholar 

  8. 8

    Arthur, J. V. & Boahen, K. A. Silicon-neuron design: A dynamical systems approach. IEEE Trans. Circuits Syst. I 58, 1034–1043 (2011).

    Article  Google Scholar 

  9. 9

    Crane, H. D. The neuristor. IRE Trans. Elect. Comput. 9, 370–371 (1960).

    Article  Google Scholar 

  10. 10

    Cote, A. J. A neuristor prototype. Proc. IRE 49, 1430–1431 (1961).

    Google Scholar 

  11. 11

    Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Article  Google Scholar 

  12. 12

    FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    CAS  Article  Google Scholar 

  13. 13

    Nishizawa, J-I. & Hayasaka, A. Two-line neuristor with active element in series and in parallel. Int. J. Electr. 26, 437–469 (1969).

    Article  Google Scholar 

  14. 14

    McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

    Article  Google Scholar 

  15. 15

    Chua, L. & Kang, S. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).

    Article  Google Scholar 

  16. 16

    Chua, L., Sbitnev, V. & Kim, H. Hodgkin–Huxley axon is made of memristors. Int. J. Bifur. Chaos 22, 1–48 (2012).

    Google Scholar 

  17. 17

    Chua, L. O. Local activity is the origin of complexity. Int. J. Bifur. Chaos Appl. Sci. Eng. 15, 3435–3456 (2005).

    Article  Google Scholar 

  18. 18

    Chudnovskii, F. A., Odynets, L. L., Pergament, A. L. & Stefanovich, G. B. Electroforming and switching in oxides of transition metals: The role of metal–insulator transition in the switching mechanism. J. Solid State Chem. 122, 95–99 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Chopra, K. L. Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963).

    Article  Google Scholar 

  20. 20

    Geppert, D. V. A new negative-resistance device. Proc. IEEE 51, 223–223 (1963).

    Article  Google Scholar 

  21. 21

    Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23, 1730–1733 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Pickett, M. D. & Williams, R. S. Sub-100 femtoJoule and sub-nanosecond thermally-driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012).

    Article  Google Scholar 

  23. 23

    Ielmini, D. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008).

    Article  Google Scholar 

  24. 24

    Pearson, S. O. & Anson, H. S. G. Demonstration of some electrical properties of neon-filled lamps. Proc. Phys. Soc. Lond. 34, 175 (1921).

    Article  Google Scholar 

  25. 25

    Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Net. 14, 1569–1572 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Chua, L. O. & Yang, L. Cellular neural networks: Applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988).

    Article  Google Scholar 

  28. 28

    Wilamowski, B. M. A novel concept of neuristor logic. Int. J. Electron. 33, 659–663 (1972).

    Article  Google Scholar 

  29. 29

    Izhikevich, E. M. & Hoppensteadt, F. C. Polychronous wavefront computations. Int. J. Bifur. Chaos 19, 1733–1739 (2009).

    Article  Google Scholar 

  30. 30

    Snider, G. S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007).

    Article  Google Scholar 

  31. 31

    Choi, H. et al. An electrically modifiable synapse array of resistive switching memory. Nanotechnology 20, 345201 (2009).

    Article  Google Scholar 

  32. 32

    Pershin, Y. V. & Ventra, M. D. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Borghetti for seeding important discussions on biological oscillators with the authors; X. Li, C. Le and T. Ha for fabrication and laboratory support; and J. P. Strachan for review and discussion of the manuscript.

Author information

Affiliations

Authors

Contributions

M.D.P. conceived, simulated, fabricated and tested the neuristor described in this work. R.S.W. guided the work and provided critical insight. G.M-R. provided discussion and analysis of results and essential management support. M.D.P. and R.S.W. wrote the manuscript.

Corresponding author

Correspondence to Matthew D. Pickett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 664 kb)

Supplementary Information

Supplementary Movie S1 (MP4 99 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pickett, M., Medeiros-Ribeiro, G. & Williams, R. A scalable neuristor built with Mott memristors. Nature Mater 12, 114–117 (2013). https://doi.org/10.1038/nmat3510

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing