Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hot exciton dissociation in polymer solar cells

Abstract

The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization1,2,3,4,5,6,7,8,9,10,11,12. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation2,3,11,13,14,15,16. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC60BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption spectra of PCPDTBT, PC60BM and PCPDTBT/PC60BM (1:4) film, and vertical excited-state transitions computed for PCPDTBT.
Figure 2: Comparison of transient absorption maps at different excitation energies of the pristine PCPDTBT (top row) and PCPDTBT/PC60BM blend (bottom row).
Figure 3: Calculated excited-state energy levels for CPDTBT4, CPDTBT4/PCB60M and PC60BM, and computed IES DOS and sketch of the molecular dimer.
Figure 4: Ultrafast dynamics of singlets, IES and polarons on different photoexcitation energies.
Figure 5: Schematic of the ultrafast photophysical scenario and IQE versus energy for a PCPDTBT/PC60BM device.

Similar content being viewed by others

References

  1. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  Google Scholar 

  2. Cowan, S. R., Banerji, N., Leong, W. L. & Heeger, A. J. Charge formation, recombination, and sweep-out dynamics in organic solar cells. Adv. Funct. Mater. 22, 1116–1128 (2012).

    Article  CAS  Google Scholar 

  3. Grancini, G. et al. Influence of blend composition on ultrafast charge generation and recombination dynamics in low band gap polymer-based organic photovoltaics. J. Phys. Chem. C 116, 9838–9844 (2012).

    Article  CAS  Google Scholar 

  4. Di Nuzzo, D. et al. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell. Adv. Mater. 22, 4321–4324 (2010).

    Article  CAS  Google Scholar 

  5. Jarzab, D. et al. Low-temperature behaviour of charge transfer excitons in narrow-bandgap polymer-based bulk heterojunctions. Adv. Energy Mater. 1, 604–610 (2011).

    Article  CAS  Google Scholar 

  6. Grancini, G. et al. Transient absorption imaging of P3HT: PCBM photovoltaic blend: Evidence for interfacial charge transfer state. J. Phys. Chem. Lett. 2, 1099–1105 (2011).

    Article  CAS  Google Scholar 

  7. Hwang, I. W. et al. Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material. Adv. Mater. 19, 2307–2312 (2007).

    Article  CAS  Google Scholar 

  8. McMahon, D. P., Cheung, D. L. & Troisi, A. Why holes and electrons separate so well in polymer: fullerene photovoltaic cells. J. Phys. Chem. Lett. 2, 2737–2741 (2011).

    Article  CAS  Google Scholar 

  9. Etzold, F. et al. The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT: PCBM photovoltaic blends. J. Am. Chem. Soc. 134, 10569–10583 (2012).

    Article  CAS  Google Scholar 

  10. Jamieson, F. C. et al. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485–492 (2012).

    Article  CAS  Google Scholar 

  11. Bakulin, A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  CAS  Google Scholar 

  12. Petrozza, A., Laquai, F., Howard, I. A., Kim, J. S. & Friend, R. H. Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer. Phys. Rev. B 81, 205421 (2010).

    Article  Google Scholar 

  13. Fazzi, D. et al. Ultrafast internal conversion in a low band gap polymer for photovoltaics: experimental and theoretical study. Phys. Chem. Chem. Phys. 14, 6367–6374 (2012).

    Article  Google Scholar 

  14. Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer—fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).

    Article  CAS  Google Scholar 

  15. Shoaee, S. et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J. Am. Chem. Soc. 132, 12919–12926 (2010).

    Article  CAS  Google Scholar 

  16. Howard, I. A., Mauer, R., Meister, M. & Laquai, F. Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells. J. Am. Chem. Soc. 132, 14866–14876 (2010).

    Article  CAS  Google Scholar 

  17. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  18. Herrmann, D. et al. Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in real time by near-infrared broadband transient absorption. J. Am. Chem. Soc. 133, 18220–118233 (2011).

    Article  CAS  Google Scholar 

  19. Singh, S. et al. Two-step charge photogeneration dynamics in polymer/fullerene blends for photovoltaic applications. Phys. Rev. B 85, 205206 (2012).

    Article  Google Scholar 

  20. Deschler, F. et al. Reduced charge transfer exciton recombination in organic semiconductor heterojunctions by molecular doping. Phys. Rev. Lett. 107, 127402 (2011).

    Article  Google Scholar 

  21. Jamieson, F. C., Agostinelli, T., Azimi, H., Nelson, J & Durrant, J. R. Field-independent charge photogeneration in PCPDTBT/PC70BM solar cells. J. Phys. Chem. Lett. 1, 3306–3310 (2010).

    Article  CAS  Google Scholar 

  22. Köhler, A. et al. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392, 903–908 (1998).

    Article  Google Scholar 

  23. Cabanillas-Gonzalez, J., Grancini, G. & Lanzani, G. Pump-probe spectroscopy in organic semiconductors: Monitoring fundamental processes of relevance in optoelectronics. Adv. Mater. 23, 5468–5485 (2011).

    Article  CAS  Google Scholar 

  24. Brida, D., Manzoni, C., Cirmi, G., Polli, D. & Cerullo, G. Tracking ultrafast energy flow in molecules using broadly tunable few-optical-cycle pulses. IEEE J. Sel. Top. Quantum Electron. 18, 329–339 (2012).

    Article  CAS  Google Scholar 

  25. Brida, D. et al. Generation of 8.5-fs pulses at 1.3 μm for ultrabroadband pump-probe spectroscopy. Opt. Express 17, 12510–12515 (2009).

    Article  CAS  Google Scholar 

  26. Liu, T., Cheung, D. L. & Troisi, A. Structural variability and dynamics of the P3HT/PCBM interface and its effects on the electronic structure and the charge-transfer rates in solar cells. Phys. Chem. Chem. Phys. 13, 21461–21470 (2011).

    Article  CAS  Google Scholar 

  27. Hiroyuki, T., Ramon, J. G. S., Bittner, E. R. & Burghardt, I. Phonon-driven exciton dissociation at donor-acceptor polymer heterojunctions. Phys. Rev. Lett. 100, 107402 (2008).

    Article  Google Scholar 

  28. Huang, Y. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Mater 7, 483–489 (2008).

    Article  CAS  Google Scholar 

  29. Crespo-Otero, R. & Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran. Theo. Chem. Acc. 131, 1237–4 (2012).

    Article  Google Scholar 

  30. Troisi, A. Charge transport in high mobility molecular semiconductors: Classical models and new theories. Chem. Soc. Rev. 40, 2347–2358 (2011).

    Article  CAS  Google Scholar 

  31. Yost, S. R., Wang, L. P. & Van Voorhis, T. Molecular insight into the energy levels at the organic donor/acceptor interface: A quantum mechanics/molecular mechanics study. J. Phys. Chem. C 115, 14431–14436 (2011).

    Article  CAS  Google Scholar 

  32. Spadafora, E. J., Demadrille, R., Ratier, B. & Grévin, B. Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy. Nano Lett. 10, 3337–3342 (2010).

    Article  CAS  Google Scholar 

  33. Brédas, J-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  Google Scholar 

  34. Frisch, M. J. et al. Gaussian 09, Revision A.1 (Gaussian, Inc., 2009).

    Google Scholar 

Download references

Acknowledgements

G.C. acknowledges financial support from the PRIN programme 2008JKBBK4. D.F. thanks M. Barbatti of the Max-Planck-Institut für Kohlenforschung for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Data were taken by and analysed by G.G., M.M., A.P. and D.B. The experiments were conceived by G.L., G.G., G.C. and H-J.E. Quantum chemical calculations were carried out by D.F. Samples were prepared by G.G. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to G. Lanzani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grancini, G., Maiuri, M., Fazzi, D. et al. Hot exciton dissociation in polymer solar cells. Nature Mater 12, 29–33 (2013). https://doi.org/10.1038/nmat3502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing