Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs


Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics1, which describes the time evolution of the Ising model and can be applied to any binary system2,3,4,5,6,7. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching8,9. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution2 to neural networks5 and chemical reactivity3,4.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glauber dynamics and domain-wall kickoff.
Figure 2: Torque magnetometry.
Figure 3: Irradiation effect.
Figure 4: Domain-wall kickoff.


  1. Glauber, R. J. Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963).

    Article  Google Scholar 

  2. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009).

    Article  Google Scholar 

  3. Skinner, J. L. Kinetic Ising model for polymer dynamics: Applications to dielectric relaxation and dynamic depolarized light scattering. J. Chem. Phys. 79, 1955–1964 (1983).

    Article  CAS  Google Scholar 

  4. Pennec, Y., Horn von Hoegen, M., Zhu, X., Fortin, D. C. & Freeman, M. R. Dynamics of an Ising chain under local excitation: A scanning tunneling microscopy study of Si(100) dimer rows at 5 K. Phys. Rev. Lett. 96, 026102 (2006).

    Article  CAS  Google Scholar 

  5. Schneidman, E., Berry, M. J. II, Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    Article  CAS  Google Scholar 

  6. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2007).

    Google Scholar 

  7. Bogani, L., Vindigni, A., Sessoli, R. & Gatteschi, D. Single-chain magnets: Where to from here? J. Mater. Chem. 18, 4750–4758 (2008).

    Article  CAS  Google Scholar 

  8. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2009).

    Article  Google Scholar 

  9. Gerrits, Th., van den Berg, H. A. M., Hohlfeld, J., Bär, L. & Rasing, Th. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    Article  CAS  Google Scholar 

  10. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  11. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  12. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  13. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    Article  CAS  Google Scholar 

  14. Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nature Photon. 4, 107–111 (2010).

    Article  CAS  Google Scholar 

  15. Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater. 2, 524–527 (2003).

    Article  CAS  Google Scholar 

  16. Bernand-Mantel, A. et al. Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nature Phys. 5, 920–924 (2009).

    Article  CAS  Google Scholar 

  17. Wernsdorfer, W., Clérac, R., Coulon, C., Lecren, L. & Miyasaka, H. Quantum nucleation in a single-chain magnet. Phys. Rev. Lett. 95, 237203 (2005).

    Article  CAS  Google Scholar 

  18. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  19. Dei, A., Gatteschi, D., Sangregorio, C. & Sorace, L. Quinonoid metal complexes: Toward molecular switches. Acc. Chem. Res. 37, 827–835 (2004).

    Article  CAS  Google Scholar 

  20. Sato, O., Tao, J. & Zhang, Y-Z. Control of magnetic properties through external stimuli. Angew. Chem. Int. Ed. 46, 2152–2187 (2007).

    Article  CAS  Google Scholar 

  21. Caneschi, A. et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 40, 1760–1763 (2001).

    Article  CAS  Google Scholar 

  22. Bogani, L. et al. Finite-size effects in single chain magnets: An experimental and theoretical study. Phys. Rev. Lett. 92, 207204 (2004).

    Article  CAS  Google Scholar 

  23. Billoni, O. V., Pianet, V., Pescia, D. & Vindigni, A. Static and dynamic properties of single-chain magnets with sharp and broad domain walls. Phys. Rev. B 84, 064415 (2011).

    Article  Google Scholar 

  24. Likhtenstein, G. I., Ishii, K. & Nakatsuji, S. Dual chromophore-nitroxides: Novel molecular probes, photochemical and photophysical models and magnetic materials. Photochem. Photobiol. 83, 871–881 (2007).

    Article  CAS  Google Scholar 

  25. McCusker, J. K., Walda, K. N., Magde, D. & Hendrickson, D. N. Picosecond excited-state dynamics in octahedral cobalt(III) complexes: Intersystem crossing versus internal conversion. Inorg. Chem. 32, 394–399 (1993).

    Article  CAS  Google Scholar 

  26. Novoselov, K. S., Geim, A. K., Dubonos, S. V., Hill, E. W. & Grigorieva, I. V. Subatomic movements of a domain wall in the Peierls potential. Nature 426, 812–816 (2003).

    Article  CAS  Google Scholar 

  27. Barbara, B. Magnetization processes in high anisotropy systems. J. Magn. Magn. Mater. 129, 79–86 (1994).

    Article  CAS  Google Scholar 

  28. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  29. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  30. Vitali, L. et al. Kondo effect in single atom contacts: The importance of the atomic geometry. Phys. Rev. Lett. 101, 216802 (2008).

    Article  Google Scholar 

  31. Trauzettel, B., Simon, P. & Loss, D. A.c. magnetization transport and power absorption in nonitinerant spin chains. Phys. Rev. Lett. 101, 017202 (2008).

    Article  Google Scholar 

Download references


We acknowledge financial support from Italian MIUR, German DFG (SPP1601, SFB-TRR21), the Humboldt Stiftung (Sofja Kovalevskaja award) and the Baden-Württemberg Stiftung (Kompetenznetz Funktionelle Nanostrukturen). We thank K. Kern, D. Wiersma, J. Wrachtrup and R. Sessoli for helpful discussions, L. Cavigli and M. Gurioli for the depletion control measurements and L. Sebeke for the movies.

Author information

Authors and Affiliations



F.E.H., E.H. and L.B. developed the experimental set-ups and performed the torque measurements. L.B., M.G.P. and A.R. developed the kickoff model. F.T. performed the ab initio calculations. L.B. devised the experiment, synthetized the samples and wrote the paper. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Lapo Bogani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2441 kb)

Supplementary Information

Supplementary Movie S1 (MOV 351 kb)

Supplementary Information

Supplementary Movie S2 (MOV 1114 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heintze, E., El Hallak, F., Clauß, C. et al. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs. Nature Mater 12, 202–206 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing