Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A rechargeable room-temperature sodium superoxide (NaO2) battery

Subjects

Abstract

In the search for room-temperature batteries with high energy densities, rechargeable metal–air (more precisely metal–oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance1. Atmospheric oxygen is used to form oxides during discharging, which—ideally—decompose reversibly during charging. Much work has been focused on aprotic Li–O2 cells (mostly with carbonate-based electrolytes and Li2O2 as a potential discharge product), where large overpotentials are observed and a complex cell chemistry is found2. In fact, recent studies evidence that Li–O2 cells suffer from irreversible electrolyte decomposition during cycling3. Here we report on a Na–O2 cell reversibly discharging/charging at very low overpotentials (< 200 mV) and current densities as high as 0.2 mA cm−2 using a pure carbon cathode without an added catalyst. Crystalline sodium superoxide (NaO2) forms in a one-electron transfer step as a solid discharge product. This work demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The general function principle of an alkali metal–oxygen battery.
Figure 2: Electrochemical characterization of Li–O2 and Na–O2 cells with a GDL cathode.
Figure 3: SEM images of the Na–O2 cell cathodes.
Figure 4: Analysis of the discharge products in Na–O2 cells.

References

  1. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  2. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem Soc. 133, 8040–8047 (2011).

    Article  CAS  Google Scholar 

  3. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    Article  CAS  Google Scholar 

  4. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    Article  CAS  Google Scholar 

  5. Lu, Y. C. et al. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    Article  CAS  Google Scholar 

  6. Débart, A., Paterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).

    Article  Google Scholar 

  7. Garsuch, A. et al. Investigation of various ionic liquids and catalyst materials for lithium–oxygen batteries. Z. Phys. Chem. 226, 107–119 (2012).

    Article  CAS  Google Scholar 

  8. Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1196 (2002).

    Article  CAS  Google Scholar 

  9. Sawyer, D. T. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Article  CAS  Google Scholar 

  10. Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991).

    Article  CAS  Google Scholar 

  11. Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable lithium–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    Article  CAS  Google Scholar 

  12. Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    Article  CAS  Google Scholar 

  13. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium–air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25543.

    Article  CAS  Google Scholar 

  15. Ó Laoire, C., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME−LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011).

    Article  Google Scholar 

  16. Lu, Y-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ Sci. 4, 2999–3007 (2011).

    Article  CAS  Google Scholar 

  17. Sun, Q., Yang, Y. & Fu, Z-W. Electrochemical properties of room temperature sodium-air batteries with nonaqueous electrolyte. Electrochem. Commun. 16, 22–25 (2012).

    Article  CAS  Google Scholar 

  18. Peled, E., Golodnitsky, D., Mazor, H., Goor, M. & Avshalomov, S. Parameter analysis of a practical lithium- and sodium-air electrical vehicle battery. J. Power Sources 196, 6835–6840 (2011).

    Article  CAS  Google Scholar 

  19. Sangster, J. & Pelton, A. D. The Li–O (lithium–oxygen) system. J. Phase Equilib. 13, 296–299 (1992).

    Article  CAS  Google Scholar 

  20. Wriedt, H. A. The Na–O (sodium–oxygen) system. Bull. Alloy Phase Diag. 8, 234–246 (1987).

    Article  CAS  Google Scholar 

  21. Peng, Z. et al. Oxygen reactions in non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    Article  CAS  Google Scholar 

  22. Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 1–6 (2011).

    Article  Google Scholar 

  23. Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1341–A1356 (2003).

    Article  Google Scholar 

  24. Xia, C., Bender, C. L., Bergner, B., Peppler, K. & Janek, J. An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li–air batteries. Electrochem. Commun. 26, 93–96 (2013).

    Article  CAS  Google Scholar 

  25. Viswanathan, V., Thygesen, K. S., Hummelshøj, J. S., Nørskov, J. K. & Girishkumar, G. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

    Article  CAS  Google Scholar 

  26. Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 143, 1093–1103 (2012).

    Article  Google Scholar 

  27. Zhuravlev, Y. N., Kravchenko, N. G. & Obolonskaya, O. S. The electronic structure of alkali metal oxides. Russ. J. Phys. Chem. B 4, 20–28 (2010).

    Article  Google Scholar 

  28. Khan, A. U. & Mahanti, S. D. Collective electron effects of O2 in potassium superoxide. J. Chem. Phys. 63, 2271–2278 (1975).

    Article  CAS  Google Scholar 

  29. Bösch, M., Känzig, W. & Steigmeier, E. F. Molekül- und Gitterschwingungen in Natriumhyperoxid. Phys. Kondens. Materie 16, 107–112 (1973).

    Google Scholar 

  30. Carter, G. F. & Tempelton, D. H. Polymorphism of sodium superoxide. J. Am. Chem. Soc. 75, 5247–5249 (1953).

    Article  CAS  Google Scholar 

  31. Ziegler, M., Roesenfeld, M., Känzig, W. & Fischer, P. Strukturuntersuchungen an alkalyhyperoxiden. Helv. Phys. Acta 49, 57–59 (1976).

    CAS  Google Scholar 

  32. Stephanou, S. E., Seyb, E. J., Kleinberg, J., Shakey, R. H & Schechter, W. H. Sodium superoxide. Inorg. Synth. 4, 82–85 (1953).

    CAS  Google Scholar 

  33. Schechter, W. H., Sisler, H. H. & Kleinberg, J. The adsorption of oxygen by sodium in liquid ammonia: Evidence of the existence of sodium superoxide. J. Am. Chem. Soc. 70, 267–269 (1948).

    Article  CAS  Google Scholar 

  34. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the BASF International Scientific Network for Electrochemistry and Batteries. P. Hartmann is grateful to Fonds der chemischen Industrie (FCI) for a scholarship. The authors thank M. Ante, B. Jache and C. Raiß for experimental support. We further thank H. Heidt, H. Weigand, G. Pfeiffer and S. Lember for technical support. We are indebted to M. Jansen (Max-Planck-Institute for Solid State Research) for providing phase-pure bulk NaO2 as a reference material.

Author information

Authors and Affiliations

Authors

Contributions

P.A., P.H. and J.J. designed this study. P.H. and C.L.B. carried out the electrochemical experiments and XRD analysis. M.V. developed the metal–air cell set-up for the battery tests. P.H. developed the gas pressure set-up and conducted the SEM, EDS and Raman spectroscopy experiments. P.H., P.A. and J.J. analysed and discussed the results and wrote the manuscript. A.K.D. and A.G. contributed to the scientific discussion. P.A. and J.J. supervised the research project.

Corresponding authors

Correspondence to Jürgen Janek or Philipp Adelhelm.

Ethics declarations

Competing interests

A US-Provisional Patent Application (US 61/615901) directed to sodium oxygen cells as described in the manuscript has been filed by BASF SE with the USPTO. A.K.D. and A.G. are employees of BASF SE.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1446 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartmann, P., Bender, C., Vračar, M. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater 12, 228–232 (2013). https://doi.org/10.1038/nmat3486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing