Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic mechanism and prediction of hydrogen embrittlement in iron

Abstract

Hydrogen embrittlement in metals has posed a serious obstacle to designing strong and reliable structural materials for many decades, and predictive physical mechanisms still do not exist. Here, a new H embrittlement mechanism operating at the atomic scale in α-iron is demonstrated. Direct molecular dynamics simulations reveal a ductile-to-brittle transition caused by the suppression of dislocation emission at the crack tip due to aggregation of H, which then permits brittle-cleavage failure followed by slow crack growth. The atomistic embrittlement mechanism is then connected to material states and loading conditions through a kinetic model for H delivery to the crack-tip region. Parameter-free predictions of embrittlement thresholds in Fe-based steels over a range of H concentrations, mechanical loading rates and H diffusion rates are found to be in excellent agreement with experiments. This work provides a mechanistic, predictive framework for interpreting experiments, designing structural components and guiding the design of embrittlement-resistant materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Atomic configurations of the near-crack-tip region, shown as views along the crack line, for orientation I at various levels of H and applied load.
Figure 2: Atomic configurations of the near-crack-tip region, shown as views along the crack line, for orientation II at various levels of H and load.
Figure 3: The amount of H in the system normalized along the crack line direction, NH/Lz, versus the stress intensity KI at which either dislocation emission or brittle cleavage occurs, as found in simulations for orientations I and II.

References

  1. 1

    Johnson, W. H. On some remarkable changes produced in iron and steels by the action of hydrogen acids. Proc. R. Soc. Lond. 23, 168–175 (1875).

    Article  Google Scholar 

  2. 2

    Fukai, Y. The Metal–Hydrogen System: Basic Bulk Properties 2nd edn (Springer, 2005).

    Google Scholar 

  3. 3

    Hardie, D., Charles, E. A. & Lopez, A. H. Hydrogen embrittlement of high strength pipeline steels. Corros. Sci. 48, 4378–4385 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Staehle, R. W. in Stress Corrsosion Cracking and Hydrogen Embrittlement of Iron Based Alloys (eds Hochmann, J., McCright, R. D. & Slater, J. E.) (National Association of Corrosion Engineers, 1977).

    Google Scholar 

  5. 5

    Troiano, A. R. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52, 54–80 (1960).

    Google Scholar 

  6. 6

    Oriani, R. A. A mechanistic theory of hydrogen embrittlement of steels. Ber. Bunsenges. Phys. Chem. 76, 848–857 (1972).

    CAS  Google Scholar 

  7. 7

    Jiang, D. E. & Carter, E. A. First principles assessment of ideal fracture energies of materials with mobile impurities: Implications for hydrogen embrittlement of metals. Acta Mater. 52, 4801–4807 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Gerberich, W. W., Oriani, R. A., Lii, M. J., Chen, X. & Foecke, T. The necessity of both plasticity and brittleness in the fracture thresholds of iron. Phil. Mag. A 63, 363–376 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Song, J., Soare, M. & Curtin, W. A. Testing continuum concepts for hydrogen embrittlement in metals using atomistics. Model Simul. Mater. Sci. 18, 045003 (2010).

    Article  Google Scholar 

  10. 10

    Chen, X. & Gerberich, W. W. The kinetics and micromechanics of hydrogen-assisted cracking in Fe3 pct Si single-crystals. Metall. Trans. A 22, 59–69 (1991).

    Article  Google Scholar 

  11. 11

    Beacham, C. D. A new model for hydrogen-assisted cracking (hydrogen ‘embrittlement’). Metall. Mater. Trans. B 3, 441–455 (1972).

    Article  Google Scholar 

  12. 12

    Birnbaum, H. K. & Sofronis, P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 176, 191–202 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Robertson, I. M. The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671–692 (2001).

    Article  Google Scholar 

  14. 14

    Ferreira, P. J., Robertson, I. M. & Birnbaum, H. K. Hydrogen effects on the interaction between dislocations. Acta Mater. 46, 1749–1757 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Sofronis, P. & Robertson, I. M. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Phil. Mag. A 82, 3405–3413 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Abraham, D. P. & Altstetter, C. J. Hydrogen-enhanced localization of plasticity in an austenitic stainless-steel. Metall. Mater. Trans. A 26, 2859–2871 (1995).

    Article  Google Scholar 

  17. 17

    Abraham, D. P. & Altstetter, C. J. The effect of hydrogen on the yield and flow-stress of an austenitic stainless-steel. Metall. Mater. Trans. A 26, 2849–2858 (1995).

    Article  Google Scholar 

  18. 18

    Asano, S. & Otsuka, R. Lattice hardening due to dissolved hydrogen in iron and steel. Scr. Metall. Mater. 10, 1015–1020 (1976).

    CAS  Article  Google Scholar 

  19. 19

    Matsumoto, R., Taketomi, S., Matsumoto, S. & Miyazaki, N. Atomistic simulations of hydrogen embrittlement. Int. J. Hydrogen Energy 34, 9576–9584 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Taketomi, S., Matsumoto, R. & Miyazaki, N. Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in alpha iron. Int. J. Mech. Sci. 52, 334–338 (2010).

    Article  Google Scholar 

  21. 21

    Hu, Z., Fukuyama, S., Yokogawa, K. & Okamoto, S. Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Model Simul. Mater. Sci. 7, 541–551 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Wen, M., Fukuyama, S. & Yokogawa, K. Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767–1773 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Xu, X. J., Wen, M., Hu, Z., Fukuyama, S. & Yokogawa, K. Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Comput. Mater. Sci. 23, 131–138 (2002).

    Article  Google Scholar 

  24. 24

    Von Pezold, J., Lymperakis, L. & Neugebauer, J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H–H interactions and the formation of local hydrides. Acta Mater. 59, 2969–2980 (2011); 59, 5868 (2011).

  25. 25

    Chandler, M. Q. et al. Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals. Acta Mater. 56, 95–104 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Thomas, R. L. S., Scully, J. R. & Gangloff, R. P. Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel. Metall. Mater. Trans. A 34, 327–344 (2003).

    Article  Google Scholar 

  27. 27

    Hoover, W., Iannucci, J., Robinson, S., Spingarn, J. & Stoltz, R. Hydrogen compatibility of structural materials for energy storage and transmission Report No. SAND80-8202 (Sandia National Laboratories, 1980).

  28. 28

    Cialone, H. & Holbrook, J. in Hydrogen Embrittlement: Prevention and Control, ASTM STP 962 (ed. Raymond, L) 134–152 (American Society for Testing and Materials, 1988).

    Book  Google Scholar 

  29. 29

    San Marchi, C. & Somerday, B. Technical reference on hydrogen compatibility of materials Report No. SAND2008-1163 (Sandia National Laboratories, 2008).

  30. 30

    Hoover, W., Robinson, S., Stoltz, R. & Spingarn, J. Hydrogen Compatibility of Structural Materials for Energy Storage and Transmission Final Report (Sandia National Laboratories, 1981).

  31. 31

    Cherepanov, G. P. Mechanics of Brittle Fracture (McGraw-Hill, 1979).

    Google Scholar 

  32. 32

    Ramasubramaniam, A., Itakura, M., Ortiz, M. & Carter, E. A. Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. J. Mater. Res. 23, 2757–2773 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Hale, L. M. et al. Molecular dynamics simulation of delamination of a stiff, body-centered cubic crystalline film from a compliant Si substrate. J. Appl. Phys. 106 (2009).

    Article  Google Scholar 

  34. 34

    Lynch, S. P. Environmentally assisted cracking—overview of evidence for an adsorption-induced localized-slip process. Acta Metall. Mater. 36, 2639–2661 (1988).

    CAS  Article  Google Scholar 

  35. 35

    Friedel, J. Dislocations 1st English edn (Pergamon, 1964).

    Google Scholar 

  36. 36

    Song, J. & Curtin, W. A. A nanoscale mechanism of hydrogen embrittlement in metals. Acta Mater. 59, 1557–1569 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Vehoff, H. & Rothe, W. Overview 30 gaseous-hydrogen embrittlement in FeSi-single and Ni-single crystals. Acta Metall. Mater. 31, 1781–1793 (1983).

    CAS  Article  Google Scholar 

  38. 38

    Alefeld, G. & Völkl, J. Hydrogen in Metals (Springer, 1978).

    Book  Google Scholar 

  39. 39

    Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Hoover, W. G. Canonical dynamics—equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Article  Google Scholar 

  41. 41

    Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    CAS  Article  Google Scholar 

  42. 42

    Swope, W. C., Andersen, H. C., Berens, P. H. & Wilson, K. R. A computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of molecules—application to small water clusters. J. Chem. Phys. 76, 637–649 (1982).

    CAS  Article  Google Scholar 

  43. 43

    Finnis, M. W. & Sinclair, J. E. A simple empirical n-body potential for transition-metals. Phil. Mag. A 50, 45–55 (1984).

    CAS  Article  Google Scholar 

  44. 44

    Daw, M. S. & Baskes, M. I. Embedded-atom method—derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

    CAS  Article  Google Scholar 

  45. 45

    Babu, S. S. et al. Hydrogen Pipeline R&D, Project Review Meeting (Oak Ridge, 2005).

    Google Scholar 

  46. 46

    Luppo, M. I. & Ovejerogarcia, J. The influence of microstructure on the trapping and diffusion of hydrogen in a low-carbon steel. Corros. Sci. 32, 1125–1136 (1991).

    CAS  Article  Google Scholar 

  47. 47

    Huang, H. & Shaw, W. J. D. Hydrogen embrittlement interactions in cold-worked steel. Corrosion 51, 30–36 (1995).

    CAS  Article  Google Scholar 

  48. 48

    Bethlehem Steel Corporation Modern Steels and their Properties: Carbon and Alloy Steel Bars and Rods. (Bethlehem Steel Corporation, 1978).

Download references

Acknowledgements

The authors acknowledge partial support of this work by the US Office of Naval Research (grant # N00014-05-1-0504), by the General Motors/Brown Collaborative Research Lab on Computational Materials and by the NSERC Discovery grant (grant # RGPIN 418469-2012).

Author information

Affiliations

Authors

Contributions

The project was planned and supervised by W.A.C. The simulations were performed and the data were collected by J.S. The results were analysed and discussed by J.S. and W.A.C. The manuscript was prepared by J.S. and W.A.C.

Corresponding author

Correspondence to W. A. Curtin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1000 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, J., Curtin, W. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nature Mater 12, 145–151 (2013). https://doi.org/10.1038/nmat3479

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing