Article | Published:

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials

Nature Materials volume 12, pages 7480 (2013) | Download Citation

Abstract

Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-NaxVO2 system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO2 slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x  =  1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na1/2VO2 phase shows that the Na+ ions are perfectly ordered to minimize Na+/Na+ electrostatic repulsions. Within the VO2 layers, the vanadium ions form pseudo-trimers with very short V–V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3-4, 165–169 (1981).

  2. 2.

    et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

  3. 3.

    , & Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).

  4. 4.

    et al. Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nature Mater. 5, 537–540 (2006).

  5. 5.

    , & Structural classification and properties of layered oxides. Physica B and C 99, 81–85 (1980).

  6. 6.

    , , , & Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 70, 024101 (2004).

  7. 7.

    , & Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nature Mater. 10, 74–80 (2011).

  8. 8.

    & Semiconductor-to-metal transition in V2O3. Phys. Rev. 155, 841–850 (1967).

  9. 9.

    et al. Electronic specific heat of metallic Ti-doped V2O3. Phys. Rev. Lett. 27, 941–943 (1971).

  10. 10.

    The present position of theory and experiment for VO2. Mater. Res. Bull. 5, 691–702 (1970).

  11. 11.

    et al. Contribution to the study of the metal-insulator transition in the V1−xNbxO2 system: I- crystallographic and transport properties. J. Phys. Chem. Solids 33, 1953–1959 (1972).

  12. 12.

    & Reactions of sodium oxide with the oxides VO2, V2O3, VO, and vanadium metal. J. Chem. Soc. Dalton Trans. 15, 1513–1517 (1973).

  13. 13.

    & A study on the preparation and physical property determination of NaVO2. J. Solid State Chem. 73, 398–404 (1988).

  14. 14.

    Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x = 0.7. J. Phys. Condens. Matter 20, 145205 (2008).

  15. 15.

    et al. Successive orbital ordering transitions in NaVO2. Phys. Rev. Lett. 101, 166402 (2008).

  16. 16.

    , , & Orbitally relieved magnetic frustration in NaVO2. Phys. Rev. B 80, 045103 (2009).

  17. 17.

    , , , & Structural distortion and orbital ordering in the triangular-lattice antiferromagnet NaVO2 from first principles. Phys. Rev. B 83, 094417 (2011).

  18. 18.

    , , , & Investigation of the new P′3-Na0.60VO2 phase: Structural and physical properties. Inorg. Chem. 48, 9147–9154 (2009).

  19. 19.

    et al. Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid State Lett. 14, A75–A78 (2011).

  20. 20.

    , , & NaxVO2 as possible electrode for Na-ion batteries. Electochem. Commun. 13, 938–941 (2011).

  21. 21.

    et al. Low temperature phase transitions and crystal structure of Na0.5CoO2. J. Phys. Condens. Matter 16, 5803–5814 (2004).

  22. 22.

    & A new crystal structure of the general formula Me2+M23+O4: SrCr2O4. Z. Anorg. Allg. Chem. 405, 1–7 (1974).

  23. 23.

    & The crystal structure of α-CaCr2O4. Z. Anorg. Allg. Chem. 405, 113–118 (1974).

  24. 24.

    & About a compound formation MO:M2O3. On BaCr2O4. Z. Anorg. Allg. Chem. 564, 26–30 (1988).

  25. 25.

    et al. Helical magnetic state in the distorted triangular lattice of α-CaCr2O4. Phys. Rev. B 83, 024409 (2011).

  26. 26.

    et al. Helical magnetism and structural anomalies in triangular lattice α-SrCr2O4. J. Phys. Condens. Matter 23, 246005 (2011).

  27. 27.

    , , , & High resolution neutron diffraction study of possible charge ordering in Na0.5CoO2. Phys. Rev. B 73, 134401 (2006).

  28. 28.

    Magnetism And The Chemical Bond (Interscience, 1963).

  29. 29.

    , , , & Superstructure analyses on single crystals of Li0.8VO2. J. Solid State Chem. 114, 184–189 (1995).

  30. 30.

    , & Crystal chemistry aspect of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chem. Mater. 12, 1248–1259 (2000).

  31. 31.

    The Chemical Bond in Inorganic Chemistry (Oxford Univ. Press, 2002).

  32. 32.

    et al. Phase transition in LiVO2 studied by near-edge X-ray-absorption spectroscopy. Phys. Rev. B 55, 15500–15505 (1997).

  33. 33.

    , & Electric and magnetic properties of LixV2−xO2. Mater. Res. Bull. 4, 95–106 (1969).

  34. 34.

    Transition Metal Oxides—An Introduction to their Electronic Structure and Properties (Clarendon, 1992).

  35. 35.

    , & The Crystallographic Computing System (Institute of Physics, 2006).

  36. 36.

    , & Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1980).

  37. 37.

    & Modeling of line-shape asymmetry in powder diffraction. J. Appl. Crystallogr. 26, 128–129 (1993).

Download references

Acknowledgements

The authors thank R. Decourt for transport measurements and C. Denage for technical assistance. Financial support was provided by CNRS and Région Aquitaine.

Author information

Affiliations

  1. CNRS, Université de Bordeaux, ICMCB site de l’ENSCBP-IPB, 87 avenue du Dr. A. Schweitzer, 33608 Pessac Cedex, France

    • Marie Guignard
    • , Christophe Didier
    • , Jacques Darriet
    •  & Claude Delmas
  2. CNRS, UJF, Institut NEEL, 38042 Grenoble Cedex 9, France

    • Pierre Bordet
  3. Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France

    • Erik Elkaïm

Authors

  1. Search for Marie Guignard in:

  2. Search for Christophe Didier in:

  3. Search for Jacques Darriet in:

  4. Search for Pierre Bordet in:

  5. Search for Erik Elkaïm in:

  6. Search for Claude Delmas in:

Contributions

M.G., J.D. and C. Delmas planned the research. M.G., C. Didier, P.B. and E.E. carried out the experimental work. M.G., C. Didier, J.D. P.B., E.E. and C. Delmas analysed the data, and wrote and revised the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Claude Delmas.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat3478

Further reading