Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant light trapping in ultrathin films for water splitting

Abstract

Semiconductor photoelectrodes for solar hydrogen production by water photoelectrolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers. Iron oxide (α-Fe2O3) is one of few materials meeting these requirements, but its poor transport properties present challenges for efficient charge-carrier generation, separation, collection and injection. Here we show that these challenges can be addressed by means of resonant light trapping in ultrathin films designed as optical cavities. Interference between forward- and backward-propagating waves enhances the light absorption in quarter-wave or, in some cases, deeper subwavelength films, amplifying the intensity close to the surface wherein photogenerated minority charge carriers (holes) can reach the surface and oxidize water before recombination takes place. Combining this effect with photon retrapping schemes, such as using V-shaped cells, provides efficient light harvesting in ultrathin films of high internal quantum efficiency, overcoming the trade-off between light absorption and charge collection. A water photo-oxidation current density of 4 mA cm−2 was achieved using a V-shaped cell comprising 26-nm-thick Ti-doped α-Fe2O3 films on back-reflector substrates coated with silver–gold alloy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resonant light trapping in quarter-wave films.
Figure 2: Light intensity maps.
Figure 3: Sunlight absorption in α-Fe2O3 films on back-reflector substrates versus their counterparts on transparent substrates.
Figure 4: Internal quantum efficiency map.
Figure 5: Photocurrent distribution maps.
Figure 6: Photocurrent as a function of film thickness.
Figure 7: Water photo-oxidation current densities obtained with ultrathin film α-Fe2O3 photoanodes on silver-based back reflectors.

Similar content being viewed by others

References

  1. Bard, A. J. & Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  4. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  5. Wrighton, M. S. Photoelectrochemical conversion of optical energy to electricity and fuels. Acc. Chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  6. Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor–solution interfaces. J. Appl. Electrochem. 37, 765–787 (2007).

    Article  CAS  Google Scholar 

  7. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 Films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  CAS  Google Scholar 

  8. Van de Krol, R., Liang, Y. & Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311–2320 (2008).

    Article  CAS  Google Scholar 

  9. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  10. Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).

    Article  Google Scholar 

  11. Brillet, J. et al. Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17–24 (2010).

    Article  CAS  Google Scholar 

  12. Tilley, S. D., Cornuz, M. & Sivula, K. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  13. Dare-Edwards, M. P., Goodenough, J. B., Hamnett, A. & Trevellick, P. R. Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79, 2027–2041 (1983).

    Article  CAS  Google Scholar 

  14. Kennedy, J. H. & Frese, K. W. Jr Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  CAS  Google Scholar 

  15. Wheeler, D. A., Wang, G., Ling, Y., Li, Y. & Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5, 6682–6702 (2012).

    Article  CAS  Google Scholar 

  16. Gärtner, W. W. Depletion layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959).

    Article  Google Scholar 

  17. Dotan, H., Sivula, K., Grätzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).

    Article  CAS  Google Scholar 

  18. Upul Wijayantha, K. G., Saremi-Yarahmadia, S. & Peter, L. M. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: A study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 5264–5270 (2011).

    Article  CAS  Google Scholar 

  19. Pendlebury, S. R. et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304–6312 (2012).

    Article  CAS  Google Scholar 

  20. Klahr, B. M. & Hamann, T. W. Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C 115, 8393–8399 (2011).

    Article  CAS  Google Scholar 

  21. Kumar, A., Santangelo, P. G. & Lewis, N. S. Electrolysis of water at SrTiO3 photoelectrodes: Distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. J. Phys. Chem. 96, 834–842 (1992).

    Article  CAS  Google Scholar 

  22. Klahr, B. M., Martinson, A. B. F. & Hamann, T. W. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27, 461–468 (2011).

    Article  CAS  Google Scholar 

  23. Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev. 29, 300–305 (1982).

    Article  Google Scholar 

  24. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  Google Scholar 

  25. Bockris, J. O’M. & Uosaki, K. The theory of the light-induced evolution of hydrogen at semiconductor electrodes. J. Electrochem. Soc. 125, 223–227 (1978).

    Article  CAS  Google Scholar 

  26. Pettersson, L. A. A., Roman, L. S. & Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999).

    Article  CAS  Google Scholar 

  27. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 2010).

    Google Scholar 

  28. Formal, F. L., Grätzel, M. & Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099–1107 (2010).

    Article  Google Scholar 

  29. Murphya, A. B. et al. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energ. 31, 1999–2017 (2006).

    Article  Google Scholar 

  30. Rim, S. B., Zhao, S., Scully, S. R., McGehee, M. D. & Peumans, P. An effective light trapping configuration for thin-film solar cells. Appl. Phys. Lett. 91, 243501 (2007).

    Article  Google Scholar 

  31. Würfel, P. Physics of Solar Cells 2nd edn (Wiley, 2009).

    Google Scholar 

  32. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012).

    Article  CAS  Google Scholar 

  33. Hisatomi, T. et al. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24, 2699–2702 (2012).

    Article  CAS  Google Scholar 

  34. Chalmers, B., King, R. & Shuttleworth, R. The thermal etching of silver. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 193, 465–483 (1948).

    Article  CAS  Google Scholar 

  35. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions 2nd edn (NACE, 1974).

    Google Scholar 

  36. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  37. Wadia, C., Alivisatos, A. P. & Kammen, D. M. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072–2077 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission Seventh Framework Programme (NanoPEC, project 227179), by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant No. 152/11) and by the KAMIN project from the Office of the Chief Scientist (OCS) in the Ministry of Industry, Trade and Labor (MOITAL). The authors thank S. C. Warren, G. Bartal and N. Tessler for reading the manuscript and providing useful comments and suggestions for improving it.

Author information

Authors and Affiliations

Authors

Contributions

H.D. and O.K. developed the optical simulation model, and H.D. and A.R. added to it the charge transport model. H.D. designed and fabricated the photoelectrodes and carried out most of the optical and photoelectrochemical measurements. E.S. and O.B. developed the stable silver–gold alloy back reflectors. H.D. and M.G. developed the selective electron transport hole blocking under layers. I.D. carried out the cross-section transmission electron microscope measurements. G.A. carried out the spectroscopic ellipsometry measurements and analysis. A.R. supervised the project and wrote the manuscript. All authors discussed the manuscript and agreed on its final content.

Corresponding author

Correspondence to Avner Rothschild.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotan, H., Kfir, O., Sharlin, E. et al. Resonant light trapping in ultrathin films for water splitting. Nature Mater 12, 158–164 (2013). https://doi.org/10.1038/nmat3477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing