Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency

Abstract

Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (LD) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer LD by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride into a wide-energy-gap host material, we optimize the degree of interaction between donor molecules and observe a ~50% increase in LD. Using this approach, we construct planar-heterojunction OPVs with a power conversion efficiency of (4.4 ± 0.3)%, > 30% larger than the case of optimized devices containing an undiluted donor layer. The underlying correlation between LD and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exciton diffusion in a dilute electron-donor film.
Figure 2: Performance of OPVs containing a dilute donor active layer.
Figure 3: Spectral response and internal efficiency.
Figure 4: Experimental prediction of self-Förster radius and exciton diffusion length.

Similar content being viewed by others

References

  1. Tang, C. W. 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  2. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 107, 4688–4698 (2003).

    Article  CAS  Google Scholar 

  3. Sun, Y. et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Mater. 11, 44–48 (2012).

    Article  CAS  Google Scholar 

  4. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    Article  CAS  Google Scholar 

  5. Liang, Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  CAS  Google Scholar 

  6. He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Article  CAS  Google Scholar 

  7. Fitzner, R. et al. Dicyanovinyl-substituted oligothiophenes: Structure-property relationships and application in vacuum-processed small-molecule organic solar cells. Adv. Funct. Mater. 21, 897–910 (2011).

    Article  CAS  Google Scholar 

  8. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  9. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  10. Wei, G. et al. Arylamine-based squaraine donors for use in organic solar cells. Nano Lett. 11, 4261–4264 (2011).

    Article  CAS  Google Scholar 

  11. Yang, F., Sun, K. & Forrest, S. R. Efficient solar cells using all-organic nanocrystalline networks. Adv. Mater. 19, 4166–4171 (2007).

    Article  CAS  Google Scholar 

  12. Luhman, W. A. & Holmes, R. J. Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer. Appl. Phys. Lett. 94, 153304 (2009).

    Article  Google Scholar 

  13. Rand, B. P. et al. Photocurrent enhancement in polymer: fullerene bulk heterojunction solar cells doped with a phosphorescent molecule. Appl. Phys. Lett. 95, 173304 (2009).

    Article  Google Scholar 

  14. Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010).

    Article  CAS  Google Scholar 

  15. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nature Mater. 9, 938–943 (2010).

    Article  CAS  Google Scholar 

  16. Powell, R. C. & Soos, Z. G. Singlet exciton energy transfer in organic solids. J. Lumin. 11, 1–45 (1975).

    Article  CAS  Google Scholar 

  17. Förster, T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  18. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Oxford Univ. Press, 1982).

    Google Scholar 

  19. Luhman, W. A. & Holmes, R. J. Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements. Adv. Funct. Mater. 21, 764–771 (2011).

    Article  CAS  Google Scholar 

  20. Maksimov, M. Z. & Rozman, I. M. On energy transfer in solid solutions. Opt. Spectrosc. 12, 337–338 (1962).

    Google Scholar 

  21. Kawamura, Y. et al. 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Appl. Phys. Lett. 86, 071104 (2005).

    Article  Google Scholar 

  22. Coffey, D. C., Ferguson, A. J., Kopidakis, N. & Rumbles, G. Photovoltaic charge generation in organic semiconductors based on long-range energy transfer. ACS Nano 4, 5437–5445 (2010).

    Article  CAS  Google Scholar 

  23. Hardin, B. E. et al. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photon. 3, 406–411 (2009).

    Article  CAS  Google Scholar 

  24. Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    Article  CAS  Google Scholar 

  25. Pettersson, L. A. A., Roman, L. S. & Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999).

    Article  CAS  Google Scholar 

  26. Holmes, R. J. et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett. 83, 3818–3820 (2003).

    Article  CAS  Google Scholar 

  27. Scully, S. R., Armstrong, P. B., Edder, C., Frechet, J. M. J. & McGehee, M. D. Long-range resonant energy transfer for enhanced exciton harvesting for organic solar cells. Adv. Mater. 19, 2961–2966 (2007).

    Article  CAS  Google Scholar 

  28. Gommans, H. et al. Electro-optical study of subphthalocyanine in a bilayer organic solar cell. Adv. Funct. Mater. 17, 2653–2658 (2007).

    Article  CAS  Google Scholar 

  29. Pandey, R., Gunawan, A. A., Mkhoyan, K. A. & Holmes, R. J. Efficient organic photovoltaic cells based on nanocrystalline mixtures of boron subphthalocyanine chloride and C60. Adv. Funct. Mater. 22, 617–624 (2011).

    Article  Google Scholar 

  30. Lunt, R. R., Giebink, N. C., Belak, A. A., Benziger, J. B. & Forrest, S. R. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009).

    Article  Google Scholar 

  31. Sullivan, P. et al. Halogenated boron subphthalocyanines as light harvesting electron acceptors in organic photovoltaics. Adv. Energy Mater. 1, 352–355 (2011).

    Article  CAS  Google Scholar 

  32. Cheyns, D., Rand, B. P. & Heremans, P. Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage. Appl. Phys. Lett. 97, 033301 (2010).

    Article  Google Scholar 

  33. Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. Enhanced open-circuit voltage in subphthalocyanine/C-60 organic photovoltaic cells. J. Am. Chem. Soc. 128, 8108–8109 (2006).

    Article  CAS  Google Scholar 

  34. Pandey, R., Zou, Y. & Holmes, R. J. Efficient, bulk heterojunction organic photovoltaic cells based on boron subphthalocyanine chloride-C-70. Appl. Phys. Lett. 101, 033308 (2012).

    Article  Google Scholar 

  35. Gilot, J., Barbu, I., Wienk, M. M. & Janssen, R. A. J. The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007).

    Article  Google Scholar 

  36. Schueppel, R. et al. Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J. Appl. Phys. 107, 044503 (2010).

    Article  Google Scholar 

  37. Scher, H. & Lax, M. Stochastic transport in a disordered solid. I. theory. Phys. Rev. B 7, 4491-4502 (1973).

    Google Scholar 

  38. Gommans, H., Schols, S., Kadashchuk, A., Heremans, P. & Meskers, S. C. J. Exciton diffusion length and lifetime in subphthalocyanine films. J. Phys. Chem. C 113, 2974–2979 (2009).

    Article  CAS  Google Scholar 

  39. Bulovic, V., Deshpande, R., Thompson, M. E. & Forrest, S. R. Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect. Chem. Phys. Lett. 308, 317–322 (1999).

    Article  CAS  Google Scholar 

  40. Rieger, P. T., Palese, S. P. & Miller, R. J. D. On the Forster model: Computational and ultrafast studies of electronic energy transport. Chem. Phys. 221, 85–102 (1997).

    Article  CAS  Google Scholar 

  41. Fennel, F. & Lochbrunner, S. Long distance energy transfer in a polymer matrix doped with a perylene dye. Phys. Chem. Chem. Phys. 13, 3527–3533 (2011).

    Article  CAS  Google Scholar 

  42. Yuichiro, K., Hiroyuki, S. & Chihaya, A. Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films. Jpn. J. Appl. Phys. 43, 7729–7730 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the National Science Foundation (NSF) Program in Solid State and Materials Chemistry (DMR-1006566). Partial support was also received from the University of Minnesota NSF Materials Research Science and Engineering Center (DMR-0819885) and the University of Minnesota Initiative for Renewable Energy and the Environment. The authors wish to acknowledge helpful discussions with D. A. Blank.

Author information

Authors and Affiliations

Authors

Contributions

S.M.M., W.A.L. and R.J.H. conceived the experiments. S.M.M. and W.A.L. fabricated the structures and carried out the measurements. S.M.M., W.A.L. and R.J.H. contributed to the analysis, and S.M.M. and R.J.H. wrote the manuscript.

Corresponding author

Correspondence to Russell J. Holmes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menke, S., Luhman, W. & Holmes, R. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nature Mater 12, 152–157 (2013). https://doi.org/10.1038/nmat3467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing