Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers

Abstract

Manipulating interfacial thermal transport is important for many technologies including nanoelectronics, solid-state lighting, energy generation and nanocomposites1,2,3. Here, we demonstrate the use of a strongly bonding organic nanomolecular monolayer (NML) at model metal/dielectric interfaces to obtain up to a fourfold increase in the interfacial thermal conductance, to values as high as 430 MW m−2 K−1 in the copper–silica system. We also show that the approach of using an NML can be implemented to tune the interfacial thermal conductance in other materials systems. Molecular dynamics simulations indicate that the remarkable enhancement we observe is due to strong NML–dielectric and NML–metal bonds that facilitate efficient heat transfer through the NML. Our results underscore the importance of interfacial bond strength as a means to describe and control interfacial thermal transport in a variety of materials systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacial thermal response to molecular functionalization.
Figure 2: Temperature profiles obtained by molecular dynamics simulations.
Figure 3: Parametric relationships derived from simulation.

Similar content being viewed by others

References

  1. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  CAS  Google Scholar 

  2. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  3. Jain, A. & Goodson, K. E. Thermal microdevices for biological and biomedical applications. J. Therm. Biol. 36, 209–218 (2011).

    Article  Google Scholar 

  4. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 9, 26–30 (2010).

    Article  CAS  Google Scholar 

  5. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

    Article  CAS  Google Scholar 

  6. Hu, M., Shenogin, S. & Keblinski, P. Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appl. Phys. Lett. 91, 241910 (2007).

    Article  Google Scholar 

  7. Wang, R. Y., Segalman, R. A. & Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

    Article  Google Scholar 

  8. Lyeo, H-K. & Cahill, D. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73, 144301 (2006).

    Article  Google Scholar 

  9. Duda, J. C., Beechem, T. E., Smoyer, J. L., Norris, P. M. & Hopkins, P. E. Role of dispersion on phononic thermal boundary conductance. J. Appl. Phys. 108, 073515 (2010).

    Article  Google Scholar 

  10. Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G. & Braun, P. V. Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

    Article  Google Scholar 

  11. Hu, M., Keblinski, P. & Schelling, P. K. Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B 79, 104305 (2009).

    Article  Google Scholar 

  12. Hu, M., Goicochea, J. V., Michel, B. & Poulikakos, D. Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces. Nano Lett. 10, 279–285 (2010).

    Article  CAS  Google Scholar 

  13. Shenogina, N., Godawat, R., Keblinski, P. & Garde, S. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys. Rev. Lett. 102, 156101 (2009).

    Article  Google Scholar 

  14. Gandhi, D. D. et al. Annealing-induced interfacial toughening using a molecular nanolayer. Nature 447, 299–302 (2007).

    Article  CAS  Google Scholar 

  15. Jain, A. et al. Atomistic fracture energy partitioning at a metal–ceramic interface using a nanomolecular monolayer. Phys. Rev. B 83, 035412 (2011).

    Article  Google Scholar 

  16. Koh, Y. K., Bae, M-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

    Article  CAS  Google Scholar 

  17. Huxtable, S. T. et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  18. Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004).

    Article  CAS  Google Scholar 

  19. Sun, H., Mumby, S. J., Maple, J. R. & Hagler, A. T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994).

    Article  CAS  Google Scholar 

  20. DelRio, F. W., Jaye, C., Fischer, D. A. & Cook, R. F. Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Appl. Phys. Lett. 94, 131909 (2009).

    Article  Google Scholar 

  21. Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  CAS  Google Scholar 

  22. Duda, J. C., Saltonstall, C. B., Norris, P. M. & Hopkins, P. E. Assessment and prediction of thermal transport at solid–self-assembled monolayer junctions. J. Chem. Phys. 134, 094704 (2011).

    Article  Google Scholar 

  23. Bodapati, A., Schelling, P., Phillpot, S. & Keblinski, P. Vibrations and thermal transport in nanocrystalline silicon. Phys. Rev. B 74, 245207 (2006).

    Article  Google Scholar 

  24. Gandhi, D. D. et al. Molecular-nanolayer-induced suppression of in-plane Cu transport at Cu–silica interfaces. Appl. Phys. Lett. 90, 163507 (2007).

    Article  Google Scholar 

  25. Singh, A. P., Gandhi, D. D., Lipp, E., Eizenberg, M. & Ramanath, G. Suppression of chemical and electrical instabilities in mesoporous silica films by molecular capping. J. Appl. Phys. 100, 114504 (2006).

    Article  Google Scholar 

  26. Thuo, M. M. et al. Odd-even effects in charge transport across self-assembled monolayers. J. Am. Chem. Soc. 133, 2962–2975 (2011).

    Article  CAS  Google Scholar 

  27. Amalric, J. et al. Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel. J. Mater. Chem. 19, 141–149 (2008).

    Article  Google Scholar 

  28. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2009).

    Article  Google Scholar 

  29. Hu, L., Desai, T. & Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 83, 195423 (2011).

    Article  Google Scholar 

  30. Costescu, R., Wall, M. & Cahill, D. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003).

    Article  Google Scholar 

  31. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  32. Shenogin, S. & Ozisik, R. Xenoview at http://xenoview.mat.rpi.edu/ (2010).

Download references

Acknowledgements

We gratefully acknowledge financial support from National Science Foundation awards CMMI 1100933 and ECCS 1002282, and an NRI grant from the SRC administered through the Index Center at the University at Albany. P.J.O. also acknowledges support from a GK-12 Fellowship from the National Science Foundation, and helpful discussions with T. R. Willemain in formulating the statistical analysis. P.H.M. and D.L. acknowledge support from the Transatlantic Partner University Fund in which both RPI and Université de Montpellier 2 are partners.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived and directed by G.R., and conducted through collaboration with M.Y., P.K. and P.H.M. P.J.O. prepared most samples, carried out the experiments and analysed the data. P.K.C. assembled MDPA and carried out fracture tests for the TiO2 samples. D.L. and P.H.M. synthesized MDPA molecules and provided interface functionalization procedures for the experiments with phosphonate nanolayers. J.L. contributed to experimental design and data analysis under the guidance of M.Y. S.S. conducted the molecular dynamics simulations under the guidance of P.K. P.J.O. wrote the paper together with G.R. using inputs from the other co-authors. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Ganpati Ramanath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, P., Shenogin, S., Liu, J. et al. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nature Mater 12, 118–122 (2013). https://doi.org/10.1038/nmat3465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing