Letter | Published:

Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers

Nature Materials volume 12, pages 118122 (2013) | Download Citation

Abstract

Manipulating interfacial thermal transport is important for many technologies including nanoelectronics, solid-state lighting, energy generation and nanocomposites1,2,3. Here, we demonstrate the use of a strongly bonding organic nanomolecular monolayer (NML) at model metal/dielectric interfaces to obtain up to a fourfold increase in the interfacial thermal conductance, to values as high as 430 MW m−2 K−1 in the copper–silica system. We also show that the approach of using an NML can be implemented to tune the interfacial thermal conductance in other materials systems. Molecular dynamics simulations indicate that the remarkable enhancement we observe is due to strong NML–dielectric and NML–metal bonds that facilitate efficient heat transfer through the NML. Our results underscore the importance of interfacial bond strength as a means to describe and control interfacial thermal transport in a variety of materials systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

  2. 2.

    et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

  3. 3.

    & Thermal microdevices for biological and biomedical applications. J. Therm. Biol. 36, 209–218 (2011).

  4. 4.

    et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 9, 26–30 (2010).

  5. 5.

    et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

  6. 6.

    , & Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appl. Phys. Lett. 91, 241910 (2007).

  7. 7.

    , & Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

  8. 8.

    & Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73, 144301 (2006).

  9. 9.

    , , , & Role of dispersion on phononic thermal boundary conductance. J. Appl. Phys. 108, 073515 (2010).

  10. 10.

    , , , & Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

  11. 11.

    , & Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B 79, 104305 (2009).

  12. 12.

    , , & Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces. Nano Lett. 10, 279–285 (2010).

  13. 13.

    , , & How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys. Rev. Lett. 102, 156101 (2009).

  14. 14.

    et al. Annealing-induced interfacial toughening using a molecular nanolayer. Nature 447, 299–302 (2007).

  15. 15.

    et al. Atomistic fracture energy partitioning at a metal–ceramic interface using a nanomolecular monolayer. Phys. Rev. B 83, 035412 (2011).

  16. 16.

    , , & Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

  17. 17.

    et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2, 731–734 (2003).

  18. 18.

    & Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004).

  19. 19.

    , , & An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994).

  20. 20.

    , , & Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Appl. Phys. Lett. 94, 131909 (2009).

  21. 21.

    et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

  22. 22.

    , , & Assessment and prediction of thermal transport at solid–self-assembled monolayer junctions. J. Chem. Phys. 134, 094704 (2011).

  23. 23.

    , , & Vibrations and thermal transport in nanocrystalline silicon. Phys. Rev. B 74, 245207 (2006).

  24. 24.

    et al. Molecular-nanolayer-induced suppression of in-plane Cu transport at Cu–silica interfaces. Appl. Phys. Lett. 90, 163507 (2007).

  25. 25.

    , , , & Suppression of chemical and electrical instabilities in mesoporous silica films by molecular capping. J. Appl. Phys. 100, 114504 (2006).

  26. 26.

    et al. Odd-even effects in charge transport across self-assembled monolayers. J. Am. Chem. Soc. 133, 2962–2975 (2011).

  27. 27.

    et al. Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel. J. Mater. Chem. 19, 141–149 (2008).

  28. 28.

    , & Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2009).

  29. 29.

    , & Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 83, 195423 (2011).

  30. 30.

    , & Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003).

  31. 31.

    & Bootstrap Methods and Their Application (Cambridge Univ. Press, 1997).

  32. 32.

    & Xenoview at  (2010).

Download references

Acknowledgements

We gratefully acknowledge financial support from National Science Foundation awards CMMI 1100933 and ECCS 1002282, and an NRI grant from the SRC administered through the Index Center at the University at Albany. P.J.O. also acknowledges support from a GK-12 Fellowship from the National Science Foundation, and helpful discussions with T. R. Willemain in formulating the statistical analysis. P.H.M. and D.L. acknowledge support from the Transatlantic Partner University Fund in which both RPI and Université de Montpellier 2 are partners.

Author information

Affiliations

  1. Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

    • Peter J. O’Brien
    • , Sergei Shenogin
    • , Philippe K. Chow
    • , Pawel Keblinski
    •  & Ganpati Ramanath
  2. Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

    • Jianxiun Liu
    •  & Masashi Yamaguchi
  3. Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, Université Montpellier 2, 34095 Montpellier, France

    • Danielle Laurencin
    •  & P. Hubert Mutin

Authors

  1. Search for Peter J. O’Brien in:

  2. Search for Sergei Shenogin in:

  3. Search for Jianxiun Liu in:

  4. Search for Philippe K. Chow in:

  5. Search for Danielle Laurencin in:

  6. Search for P. Hubert Mutin in:

  7. Search for Masashi Yamaguchi in:

  8. Search for Pawel Keblinski in:

  9. Search for Ganpati Ramanath in:

Contributions

The project was conceived and directed by G.R., and conducted through collaboration with M.Y., P.K. and P.H.M. P.J.O. prepared most samples, carried out the experiments and analysed the data. P.K.C. assembled MDPA and carried out fracture tests for the TiO2 samples. D.L. and P.H.M. synthesized MDPA molecules and provided interface functionalization procedures for the experiments with phosphonate nanolayers. J.L. contributed to experimental design and data analysis under the guidance of M.Y. S.S. conducted the molecular dynamics simulations under the guidance of P.K. P.J.O. wrote the paper together with G.R. using inputs from the other co-authors. All authors discussed the results and implications and commented on the manuscript at all stages.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ganpati Ramanath.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat3465

Further reading