Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain

Abstract

Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy-efficient refrigeration, but only a few materials that suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La0.7Ca0.3MnO3 using strain-mediated feedback from BaTiO3 substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural properties of LCMOBTO at room temperature.
Figure 2: Magnetic properties of LSMOBTO and LCMOBTO.
Figure 3: Local magnetic properties of LCMOBTO near the R–O substrate transition.
Figure 4: Extrinsic magnetocaloric effects in LCMOBTO near the R–O substrate transition.
Figure 5: Extrinsic and intrinsic magnetocaloric effects for LCMOBTO.

Similar content being viewed by others

References

  1. Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43, 768 (1933).

    Article  CAS  Google Scholar 

  2. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5Si2Ge2 . Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  3. Pecharsky, V. K. & Gschneidner, K. A. Jr Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~ 20 to ~ 290 K. Appl. Phys. Lett. 70, 3299–3301 (1997).

    Article  CAS  Google Scholar 

  4. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1−xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001).

    Article  CAS  Google Scholar 

  5. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  Google Scholar 

  6. Hu, F-X., Shen, B-G., Sun, J-R. & Wu, G-H. Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B 64, 132412 (2001).

    Article  Google Scholar 

  7. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  8. Krenke, T. et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007).

    Article  Google Scholar 

  9. Sandeman, K. G. et al. Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1−xGex . Phys. Rev. B 74, 224436 (2006).

    Article  Google Scholar 

  10. Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).

    Article  Google Scholar 

  11. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).

    Article  Google Scholar 

  12. Zhang, X. X., Tejada, J., Xin, Y., Sun, G. F., Wong, K. W. & Bohigas, X. Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials. Appl. Phys. Lett. 69, 3596–3598 (1996).

    Article  CAS  Google Scholar 

  13. Xiong, C. M., Sun, J. R., Chen, Y. F., Shen, B. G., Du, J. & Li, Y. X. Relation between magnetic entropy and resistivity in La0.67Ca0.33MnO3 . IEEE Trans. Magn. 41, 122–124 (2005).

    Article  CAS  Google Scholar 

  14. Morelli, D. T., Mance, A. M., Mantese, J. V. & Micheli, A. L. Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79, 373–375 (1996).

    Article  CAS  Google Scholar 

  15. Mosca, D. H., Vidal, F. & Etgens, V. H. Strain engineering of the magnetocaloric effect in MnAs epilayers. Phys. Rev. Lett. 101, 125503 (2008).

    Article  CAS  Google Scholar 

  16. Fäth, M. et al. Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999).

    Article  Google Scholar 

  17. Israel, C. et al. Translating reproducible phase-separated texture in manganites into reproducible two-state low-field magnetoresistance: An imaging and transport study. Phys. Rev. B 78, 054409 (2008).

    Article  Google Scholar 

  18. Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Institute of Physics, 2003).

    Book  Google Scholar 

  19. Planes, A., Mañosa, Ll. & Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21, 233201 (2009).

    Article  Google Scholar 

  20. Caron, L. et al. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 321, 3559–3566 (2009).

    Article  CAS  Google Scholar 

  21. Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007).

    Article  CAS  Google Scholar 

  22. Lee, M. K., Nath, T. K., Eom, C. B., Smoak, M. C. & Tsui, F. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000).

    Article  CAS  Google Scholar 

  23. Dale, D., Fleet, A., Brock, J. D. & Suzuki, Y. Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Appl. Phys. Lett. 82, 3725–3727 (2003).

    Article  CAS  Google Scholar 

  24. Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Phil. Mag. 40, 1019–1040 (1949).

    Article  CAS  Google Scholar 

  25. Hibble, S. J., Cooper, S. P., Hannon, A. C., Fawcett, I. D. & Greenblatt, M. Local distortions in the colossal magnetoresistive manganates La0.70Ca0.30MnO3, La0.80Ca0.20MnO3 and La0.70Sr0.30MnO3 revealed by total neutron diffraction. J. Phys. Condens. Matter 11, 9221–9238 (1999).

    Article  CAS  Google Scholar 

  26. Bah, R., Bitok, D., Rakhimov, R. R., Noginov, M. M., Pradhan, A. K. & Noginova, N. Ferromagnetic resonance studies on colossal magnetoresistance films: Effects of homogeneity and light illumination. J. Appl. Phys 99, 08Q312 (2006).

    Article  Google Scholar 

  27. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (January, 2003).

    Article  CAS  Google Scholar 

  28. Salje, E. K. H. A pre-martensitic elastic anomaly in nanomaterials: Elasticity of surface and interface layers. J. Phys. Condens. Matter 20, 485003 (2008).

    Article  Google Scholar 

  29. Gschneidner, K. A. Jr & Pecharsky, V. K. Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000).

    Article  CAS  Google Scholar 

  30. Possenriede, E., Jacobs, P. & Schirmer, O. F. Paramagnetic defects in BaTiO3 and their role in light-induced charge transport: I. ESR studies. J. Phys. Condens. Matter 4, 4719–4742 (1992).

    Article  CAS  Google Scholar 

  31. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  CAS  Google Scholar 

  32. Schmool, D. S. & Barandiarán, J. M. Ferromagnetic resonance and spin wave resonance in multiphase materials: Theoretical considerations. J. Phys. Condens. Matter 10, 10679–10700 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Bhattacharya, M. Bibes, M. J. Calderón, S-W. Cheong, G. Creeth, S. Kar-Narayan, P. B. Littlewood, Ll. Mañosa, A. J. Millis, A. Planes and E. K. H. Salje for illuminating discussions. The authors also thank C. Israel, V. Dzyublyuk and G. Ercolano for assistance. This work was supported by UK EPSRC grants EP/E03389X and EP/E0026206. X.M. acknowledges support from the Herchel Smith Fund, and the Comissionat per a Universitats i Recerca (CUR) del Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya. Work at nanoGUNE was supported by funding from the Basque Government under the Etortek Program IE11-304, and the Spanish Consolider-Ingenio 2010 Program, Project No. CSD2006-53. Work at the Institute of Magnetism was supported by the Ukrainian State Fund for Fundamental Researches (Project No. F41.1/020). C.D. acknowledges support from The Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

N.D.M. suggested the study. X.M. and N.D.M. led the project. X.M. fabricated the samples and performed the XRD, AFM, DSC, and Princeton VSM measurements. X.M. and M.E.V. interpreted the XRD data. L.E.H., with assistance from O.H., performed the SQUID-VSM measurements, and the Quantum Design VSM measurements in Supplementary Fig. S7. S.S.D. led the collection and the analysis of the XMCD-PEEM data. X.M., S.S.D., F.M., L.C.P. and M.G. collected the XMCD-PEEM data. F.M. and S.S.D. analysed the XMCD-PEEM data. A.I.T. and D.I.P. performed and interpreted the FMR measurements. C.D. was responsible for TEM sample preparation and measurements. X.M. and N.D.M. interpreted the key findings. N.D.M. wrote the manuscript with X.M., using substantive feedback from E.D., L.E.H., A.B., M.G., F.M., S.S.D. and A.I.T. Authors M.E.V., C.D., L.C.P. and O.H. also contributed to the preparation of the manuscript.

Corresponding author

Correspondence to N. D. Mathur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moya, X., Hueso, L., Maccherozzi, F. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Mater 12, 52–58 (2013). https://doi.org/10.1038/nmat3463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing