Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic-scale determination of surface facets in gold nanorods

Abstract

It is widely accepted that the physical properties of nanostructures depend on the type of surface facets1,2. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing3,4. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials5,6. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Comparison between Au nanorods grown with CTAB and gemini surfactants.
Figure 2: 3D reconstruction of Au nanorods.
Figure 3: 3D Fourier transform of the reconstructed CTAB nanorod.
Figure 4: Atomic-resolution reconstruction of a Au nanorod.

References

  1. Pecharroman, C., Perez-Juste, J., Mata-Osoro, G., Liz-Marzan, L. M. & Mulvaney, P. Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Phys. Rev. B 77, 035418 (2008).

    Article  Google Scholar 

  2. Chang, L. Y., Barnard, A. S., Gontard, L. C. & Dunin-Borkowski, R. E. Resolving the structure of active sites on platinum catalytic nanoparticles. Nano. Lett. 10, 3073–3076 (2010).

    CAS  Article  Google Scholar 

  3. Carbo-Argibay, E. et al. The crystalline structure of gold nanorods revisited: Evidence for higher-index lateral facets. Angew. Chem. Int. Ed. 49, 9397–9400 (2010).

    CAS  Article  Google Scholar 

  4. Katz-Boon, H. et al. Three-dimensional morphology and crystallography of gold nanorods. Nano Lett. 11, 273–278 (2011).

    CAS  Article  Google Scholar 

  5. Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    CAS  Article  Google Scholar 

  6. Erni, R., Rossell, M. D., Kisielowski, C. & Dahmen, U. Atomic-resolution imaging with a Sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

    Article  Google Scholar 

  7. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    CAS  Article  Google Scholar 

  8. Grzelczak, M., Perez-Juste, J., Mulvaney, P. & Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008).

    CAS  Article  Google Scholar 

  9. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271–280 (2009).

    CAS  Article  Google Scholar 

  10. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).

    CAS  Article  Google Scholar 

  11. Midgley, P. A., Ward, E. P. W., Hungria, A. B. & Thomas, J. M. Nanotomography in the chemical, biological and materials sciences. Chem. Soc. Rev. 36, 1477–1494 (2007).

    CAS  Article  Google Scholar 

  12. Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R. & Van Tendeloo, G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).

    CAS  Article  Google Scholar 

  13. Bals, S. et al. Three-dimensional atomic imaging of colloidal core-shell nanocrystals. Nano. Lett. 11, 3420–3424 (2011).

    CAS  Article  Google Scholar 

  14. Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    CAS  Article  Google Scholar 

  15. Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870–1901 (2005).

    CAS  Article  Google Scholar 

  16. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    CAS  Article  Google Scholar 

  17. Wang, Z. L., Mohamed, M. B., Link, S. & El-Sayed, M. A. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 440, L809–L814 (1999).

    Google Scholar 

  18. Hartel, P., Rose, H. & Dinges, C. Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996).

    CAS  Article  Google Scholar 

  19. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    CAS  Article  Google Scholar 

  20. Nellist, P. D. & Pennycook, S. J. The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Elect. Phys. 113, 147–203 (2000).

    Article  Google Scholar 

  21. Candes, E. J. & Wakin, M. B. An introduction to compressive sampling. IEEE Signal Proc. Mag. 25, 21–30 (2008).

    Article  Google Scholar 

  22. Donoho, D. L. Compressed sensing. IEEE Trasns. Inform. Theory 52, 1289–1306 (2006).

    Article  Google Scholar 

  23. Goris, B., Van den Broek, W., Batenburg, K. J., Mezerji, H. H. & Bals, S. Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012).

    CAS  Article  Google Scholar 

  24. Saghi, Z. et al. Three-Dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Lett. 11, 4666–4673 (2011).

    CAS  Article  Google Scholar 

  25. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theoret. Biol. 36, 105–117 (1972).

    CAS  Article  Google Scholar 

  26. Kim, S. J., Koh, K., Lustig, M., Boyd, S. & Gorinevsky, D. An interior-point method for large-scale l(1)-regularized least squares. IEEE J-Stsp 1, 606–617 (2007).

    Google Scholar 

  27. Seo, J. et al. Transmission of topological surface states through surface barriers. Nature 466, 343–346 (2010).

    CAS  Article  Google Scholar 

  28. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  29. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    CAS  Article  Google Scholar 

  30. Johnson, C. L. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Mater. 7, 120–124 (2008).

    CAS  Article  Google Scholar 

  31. Ouyang, G., Zhu, W. G., Sun, C. Q., Zhu, Z. M. & Liao, S. Z. Atomistic origin of lattice strain on stiffness of nanoparticles. Phys. Chem. Chem. Phys. 12, 1543–1549 (2010).

    CAS  Article  Google Scholar 

  32. Guerrero-Martinez, A., Perez-Juste, J., Carbo-Argibay, E., Tardajos, G. & Liz-Marzan, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48, 9484–9488 (2009).

    CAS  Article  Google Scholar 

  33. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Rosenauer from IFP, Bremen, for the use of the STEMsim program and A. Béché from FEI for his technical advice. The work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant to B.G. G. Van Tendeloo acknowledges financial support from the European Research Council (ERC Advanced Grant 24691—COUNTATOMS). L.M.L-M. acknowledges financial support from the European Research Council (ERC Advanced Grant 267867—PLASMAQUO). The authors appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). The authors also acknowledge financial support from the Flemish Hercules 3 programme for large infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and S.B. performed the experiments and analysed the 3D reconstructions, B.G. and W.V.d.B. developed the reconstruction algorithm, E.C-A., S.G-G. and L.M.L-M. carried out particle synthesis and interpreted the results, G.V.T. contributed to the methodology, the interpretation and to the redaction. All the authors read and commented on the paper.

Corresponding author

Correspondence to Sara Bals.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 638 kb)

Supplementary Information

Supplementary Movie S1 (MPG 1487 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goris, B., Bals, S., Van den Broek, W. et al. Atomic-scale determination of surface facets in gold nanorods. Nature Mater 11, 930–935 (2012). https://doi.org/10.1038/nmat3462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3462

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing