Abstract
Heat transport across interfaces is often discussed in terms of the transmission probability of the heat-carrying phonons through the contact zone. Although interface roughness influences the true contact area and affects phonon scattering within the contact zone, its effect on nanoscale heat transport remains poorly understood. Here, we report experimental data on the pressure dependence of thermal transport across polished nanoscale contacts. The data can be quantitatively explained by a model of thermal conductance across interfaces that incorporates the effect of nanoscale roughness through the quantized thermal conductance across individual atomic-scale contacts within the contact zone.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The influence of statistical properties of Fourier coefficients on random Gaussian surfaces
Scientific Reports Open Access 16 May 2017
-
Probing and tuning frictional aging at the nanoscale
Scientific Reports Open Access 30 May 2013
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Schwartz, E. & Pohl, R. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).
Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si–Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004).
Kechrakos, D. The role of interface disorder in the thermal boundary conductivity between two crystals. J. Phys. Condens. Matter 3, 1443–1452 (1991).
Stevens, R. J., Zhigilei, L. V. & Norris, P. M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations. Int. J. Heat Mass Trans. 50, 3977–3989 (2007).
Patton, K. R. & Geller, M. R. Thermal transport through a mesoscopic weak link. Phys. Rev. B 64, 155320 (2001).
Prasher, R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009).
Persson, B. N. J., Volokitin, A. I. & Ueba, H. Phononic heat transfer across an interface: thermal boundary resistance. J. Phys. Condens. Matter 23, 045009 (2011).
Greenwood, J. A. & Williamson, J. B. P. Contact of nominally flat surfaces. Proc. R. Soc. A 295, 300–319 (1966).
Persson, B. N. J. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001).
Bhushan, B. Introduction to Tribology (Wiley, 2002).
Gmelin, E., Asen-Palmer, M., Reuther, M. & Villar, R. Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D 32, R19–R43 (1999).
Persson, B., Lorenz, B. & Volokitin, A. Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E 31, 3–24 (2010).
Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).
Knippenberg, M. T., Mikulski, P. T., Dunlap, B. I. & Harrison, J. A. Atomic contributions to friction and load for tip self-assembled monolayers interactions. Phys. Rev. B 78, 235409 (2008).
Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).
Cheng, S. & Robbins, M. Defining contact at the atomic scale. Tribol. Lett. 39, 329–348 (2010).
Carpick, R. W. & Salmeron, M. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997).
Gao, G., Cannara, R. J., Carpick, R. W. & Harrison, J. Atomic-scale friction on diamond: A comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007).
Mo, Y. & Szlufarska, I. Roughness picture of friction in dry nanoscale contacts. Phys. Rev. B 81, 035405 (2010).
Gao, J., Luedtke, W. D., Gourdon, D., Ruths, M., Israelachvili, J. N. & Landman, U. Frictional forces and Amontons law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3427 (2004).
Pendry, J. B. Quantum limits to the flow of information and entropy. J. Phys. A 16, 2161–2171 (1983).
Maynard, R. & Akkermans, E. Thermal conductance and giant fluctuations in one-dimensional disordered systems. Phys. Rev. B 32, 5440–5442 (1985).
Rego, L. G. C. & Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998).
Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).
Hinz, M., Marti, O., Gotsmann, B., Lantz, M. A. & Dürig, U. High resolution vacuum scanning thermal microscopy of HfO2 and SiO2 . Appl. Phys. Lett. 92, 043122 (2008).
Chapuis, P-O., Greffet, J-J., Joulain, K. & Volz, S. Heat transfer between a nano-tip and a surface. Nanotechnology 17, 2978–2981 (2006).
Gotsmann, B. & Lantz, M. A. Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008).
Bhaskaran, H. et al. Ultra-low nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like-carbon. Nature Nanotech. 5, 181–185 (2010).
Friedmann, T. A. et al. Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond. Appl. Phys. Lett. 71, 3820–3822 (1997).
Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A. C. & Robertson, J. The ultrasmoothness of diamond-like carbon surfaces. Science 309, 1545–1548 (2005).
Schwarz, U. D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003).
Andersson, S. & Backstrom, G. The thermal conductivity and heat capacity of single-crystal Si under hydrostatic pressure. J. Phys. Condens. Matter 21, 3727–3735 (1988).
Andersson, S. & Dzhavadov, L. Thermal conductivity and heat capacity of amorphous SiO2: Pressure and volume dependence. J. Phys. Condens. Matter 4, 6209–6216 (1992).
Balandin, A. A., Shamsa, M., Liu, W. L., Casiraghi, C. & Ferrari, A. C. Thermal conductivity of ultrathin tetrahedral amorphous carbon films. Appl. Phys. Lett. 93, 043115 (2008).
Grierson, D. S. et al. Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010).
Chen, G. Nanoscale Energy Transport and Conversion (Oxford Univ. Press, 2005).
Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) (CRC, 2006).
Venkatesh, R., Amrit, J., Chalopin, Y. & Volz, S. Thermal resistance of metal nanowire junctions in the ballistic regime. Phys. Rev. B 83, 115425 (2011).
Diao, J., Srivastava, D. & Menon, M. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance. J. Chem. Phys. 128, 164708 (2008).
Hsieh, W-P., Lyons, A. S., Pop, E., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84, 184107 (2012).
Menges, F., Riel, H., Stemmer, A. & Gotsmann, B. Quantitative thermometry of nanoscale hot spots. Nano Lett. 12, 596–601 (2012).
Acknowledgements
We thank T. A. Friedmann and R. W. Carpick for the taC sample and background information on the material. We are grateful to U. Drechsler and M. Despont for fabricating the heatable silicon tips. Furthermore, continuous support from E. Eleftheriou, H. Riel and W. Riess is gratefully acknowledged. We thank C. Bolliger for proofreading the manuscript, D. Cahill for sharing a manuscript before publication and C. Dames for stimulating discussions.
Author information
Authors and Affiliations
Contributions
B.G. and M.L. designed and ran the experiments and analysed the data. B.G. developed the model and performed the calculations. B.G. and M.L. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1005 kb)
Rights and permissions
About this article
Cite this article
Gotsmann, B., Lantz, M. Quantized thermal transport across contacts of rough surfaces. Nature Mater 12, 59–65 (2013). https://doi.org/10.1038/nmat3460
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3460
This article is cited by
-
A Comprehensive Review for Micro/Nanoscale Thermal Mapping Technology Based on Scanning Thermal Microscopy
Journal of Thermal Science (2022)
-
Rational design of graphene structures for preparing high-performance thermal interface materials: A mini review
Science China Physics, Mechanics & Astronomy (2022)
-
The influence of statistical properties of Fourier coefficients on random Gaussian surfaces
Scientific Reports (2017)
-
Heat transport through atomic contacts
Nature Nanotechnology (2017)
-
Thermoelectric imaging of structural disorder in epitaxial graphene
Nature Materials (2013)