Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological crystalline insulator states in Pb1−xSnxSe


Topological insulators are a class of quantum materials in which time-reversal symmetry, relativistic effects and an inverted band structure result in the occurrence of electronic metallic states on the surfaces of insulating bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical results have suggested the existence of topological crystalline insulators (TCIs), a class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in ensuring topological protection1,2. In this study we show that the narrow-gap semiconductor Pb1−xSnxSe is a TCI for x = 0.23. Temperature-dependent angle-resolved photoelectron spectroscopy demonstrates that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a TCI. These experimental findings add a new class to the family of topological insulators, and we anticipate that they will lead to a considerable body of further research as well as detailed studies of topological phase transitions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pb1−xSnxSe alloys as TCIs.
Figure 2: Band structure calculations of Pb1−xSnxTe.
Figure 3: ARPES studies of the (001) surface of Pb0.77Sn0.23Se monocrystals.


  1. 1

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  Google Scholar 

  2. 2

    Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nature Commun. 3, 982 (2012).

    Article  Google Scholar 

  3. 3

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Xu, S-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    CAS  Article  Google Scholar 

  8. 8

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  9. 9

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  10. 10

    Nimtz, G. & Schlicht, B. in Narrow Gap Semiconductors (ed. Höhler, G.) (Springer Tracts in Modern Physics, Vol. 98, Springer, 1983).

    Google Scholar 

  11. 11

    Khokhlov, D. R. (ed.) in Lead Chalcogenides: Physics and Applications (Taylor and Francis, 2003).

  12. 12

    Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 47, 66–69 (2011).

    Article  Google Scholar 

  13. 13

    Buczko, R. & Cywiński, Ł. PbTe/PbSnTe heterostructures as analogs of topological insulators. Phys. Rev. B 85, 205319 (2012).

    Article  Google Scholar 

  14. 14

    Littlewood, P. B. et al. Band structure of SnTe studied by photoemission spectroscopy. Phys. Rev. Lett. 105, 086404 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Strauss, A. J. Inversion of conduction and valence bands in Pb1−xSnxSe alloys. Phys. Rev. 157, 608–611 (1967).

    CAS  Article  Google Scholar 

  16. 16

    Dimmock, J. O., Melngailis, I. & Strauss, A. J. Band structure and laser action in PbxSn1−xTe. Phys. Rev. Lett. 16, 1193–1196 (1966).

    CAS  Article  Google Scholar 

  17. 17

    Lent, C. S. et al. Relativistic empirical tight-binding theory of the energy bands of GeTe, SnTe, PbTe, PbSe, PbS, and their alloys. Superlatt. Microstruct. 2, 491–499 (1986).

    CAS  Article  Google Scholar 

  18. 18

    Mitchell, D. L. & Wallis, R. F. Theoretical energy-band parameters for the lead salts. Phys. Rev. 151, 581–595 (1966).

    CAS  Article  Google Scholar 

  19. 19

    Kriechbaum, M., Ambrosch, K. E., Fantner, E. J., Clemens, H. & Bauer, G. Electronic structure of PbTe/Pb1−xSnxTe superlattices. Phys. Rev. B 30, 3394–3405 (1984).

    CAS  Article  Google Scholar 

  20. 20

    Dixon, J. R. & Hoff, G. F. Influence of band inversion upon the electrical properties of Pb0.77Sn0.23Se. Phys. Rev. B 3, 4299–4307 (1971).

    Article  Google Scholar 

  21. 21

    Melngailis, J., Harman, T. C. & Kernan, W. C. Shubnikov-de Haas measurements in Pb1−xSnxSe. Phys. Rev. B 5, 2250–2257 (1972).

    Article  Google Scholar 

  22. 22

    Qu, D-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Taskin, A. A., Ren, Z., Sasaki, S., Segawa, K. & Ando, Y. Observation of Dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 107, 016801 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nature Phys. 6, 960–964 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  Google Scholar 

  26. 26

    Szczerbakow, A. & Durose, K. Self-selecting vapour growth of bulk crystals—principles and applicability. Prog. Cryst. Growth Charact. Mater. 51, 81–108 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Szczerbakow, A. & Berger, H. Investigation of the composition of vapour-grown Pb1−xSnxSe crystals (x≤0.4) by means of lattice parameter measurements. J. Cryst. Growth 139, 172–178 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Berntsen, M. H., Götberg, O. & Tjernberg, O. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 095113 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Jensen, B. N., Butorin, S. M., Kaurila, T., Nyholm, R. & Johansson, L. I. Design and performance of a spherical grating monochromator used at MAX I. Nucl. Instr. Meth. Phys. Res. A 394, 243–250 (1997).

    CAS  Article  Google Scholar 

Download references


We would like to acknowledge V. Domukhovski and A. Reszka for structural and chemical composition analyses of the crystals, J. Adell for his help during our beam time at MAX-lab, S. Safai for her help in numerical calculations, and P. Kacman for critical reading of the manuscript. In Poland, this work was supported by the European Commission Network SemiSpinNet (PITN-GA-2008-215368) and by the European Regional Development Fund through the Innovative Economy grant (POIG.01.01.02-00-108/09). In Sweden, this work was made possible through support from the Knut and Alice Wallenberg Foundation and the Swedish Research Council.

Author information




P.D., B.J.K. and T.B. planned and performed the ARPES studies at MAX-lab and analysed the data. K.D. and M.S. did magnetotransport measurements. K.D. performed conductivity tensor analysis and wrote part of the manuscript. R.B. carried out theoretical band structure calculations. A.S. grew the crystals. E.Ł. characterized the crystals with the atomic force microscopy method. B.M.W., M.H.B., T.B. and O.T. performed the BALTAZAR ARPES measurements. B.M.W., M.H.B. and O.T. performed ARPES data analysis and wrote part of the manuscript. T.S. initiated the project and wrote part of the manuscript. All authors contributed to data analysis and editing of the manuscript.

Corresponding authors

Correspondence to O. Tjernberg or T. Story.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 968 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dziawa, P., Kowalski, B., Dybko, K. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Mater 11, 1023–1027 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing