Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene field-effect transistors as room-temperature terahertz detectors


The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications1, including fast photodetectors2, transparent electrodes in displays and photovoltaic modules1,3, optical modulators4, plasmonic devices5, microcavities6, and ultra-fast lasers7. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antenna-coupled GFET-terahertz detector.
Figure 2: Device characteristics.
Figure 3: Responsivity.
Figure 4: NEP.
Figure 5: Fast, large-area, RT, terahertz imaging.

Similar content being viewed by others


  1. Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  2. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  3. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 4, 574–578 (2010).

    Article  Google Scholar 

  4. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  CAS  Google Scholar 

  5. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    Article  CAS  Google Scholar 

  6. Engel, M. et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  Google Scholar 

  7. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  CAS  Google Scholar 

  8. Mittleman, D. Sensing with Terahertz Radiation (Springer, 2003).

    Book  Google Scholar 

  9. Sizov, F. & Rogalski, A. Thz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

    Article  Google Scholar 

  10. Knap, W. et al. Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. TeraHz Waves 30, 1319–1337 (2009).

    CAS  Google Scholar 

  11. Vitiello, M. S. et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12, 96–101 (2012).

    Article  CAS  Google Scholar 

  12. Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993).

    Article  CAS  Google Scholar 

  13. Teppe, F. et al. Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor. Appl. Phys. Lett. 87, 052107 (2005).

    Article  Google Scholar 

  14. Nadar, S. et al. Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors. J. Appl. Phys. 108, 054508 (2010).

    Article  Google Scholar 

  15. Preu, S., Kim, S., Verma, R., Burke, P. G. & Sherwin, M. S. An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111, 024502 (2012).

    Article  Google Scholar 

  16. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  17. Liu, T., Willis, R. F., Emtsev, K. V. & Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 201403 (2008).

    Article  Google Scholar 

  18. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    Article  CAS  Google Scholar 

  19. Yan, J. et al. Observation of magnetophonon resonance of Dirac fermions in graphite. Phys. Rev. Lett. 105, 227401 (2010).

    Article  Google Scholar 

  20. Ryzhii, V. Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys. 45, L923–L925 (2006).

    Article  CAS  Google Scholar 

  21. Rana, F. Graphene terahertz sources and amplifiers. IEEE Trans. Nanotech. 7, 91–99 (2008).

    Article  Google Scholar 

  22. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  CAS  Google Scholar 

  23. Song, J. C. W., Rudner, M.S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  24. Gabor, N. M. et al. Hot-carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  25. Casiraghi, C, Pisana, S., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

    Article  Google Scholar 

  26. Martin, J. et al. Observation of electron hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  27. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  CAS  Google Scholar 

  28. Lisauskas, A. et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009).

    Article  Google Scholar 

  29. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, 1966).

    Google Scholar 

  30. Gu, N., Rudner, M. & Levitov, L. Chirality-assisted electronic cloaking of confined states in bilayer graphene. Phys. Rev. Lett. 107, 156603 (2011).

    Article  Google Scholar 

  31. Nandkishore, R. & Levitov, L. Common-path interference and oscillatory Zener tunneling in bilayer graphene p–n junctions. Proc. Natl Acad. Sci. USA 108, 14021–14025 (2011).

    Article  CAS  Google Scholar 

  32. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  33. Tauk, R. et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006).

    Article  Google Scholar 

  34. Sakowicz, M. et al. Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110, 054512 (2011).

    Article  Google Scholar 

  35. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  36. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  37. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

    Article  CAS  Google Scholar 

  38. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  39. Cancado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  CAS  Google Scholar 

  40. Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (2008).

    Article  Google Scholar 

Download references


We thank A. H. MacDonald, S. Roddaro and V. Piazza for very fruitful discussions. We acknowledge funding from MIUR-FIRB grant no. RBFR10M5BT and grant no. RBFR10LULP, MISE-ICE grant TERAGRAPH, GIS-TERALAB, GDR2987, GDR-I terahertz, the Region Languedoc-Roussillon, the ERC grant NANOPOTS, EU grants RODIN and GENIUS, a Royal Society Wolfson Research Merit Award, EPSRC grants EP/GO30480/1 and EP/G042357/1, and the Cambridge Nokia Research Centre.

Author information

Authors and Affiliations



M.S.V., A.C.F., W.K., V.P. and A.T. devised the experiments. L.V., M.S.V., D.C. and A.L. performed the experiments. M.S.V., D.C., A.C.F., M.P., V.P. and A.T. analysed and modelled the data. M.S.V., A.C.F., M.P., V.P. and A.T. wrote the paper.

Corresponding author

Correspondence to M. S. Vitiello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vicarelli, L., Vitiello, M., Coquillat, D. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater 11, 865–871 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing