Letter

Graphene field-effect transistors as room-temperature terahertz detectors

Received:
Accepted:
Published online:

Abstract

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications1, including fast photodetectors2, transparent electrodes in displays and photovoltaic modules1,3, optical modulators4, plasmonic devices5, microcavities6, and ultra-fast lasers7. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  • Subscribe to Nature Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

  2. 2.

    , , , & Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

  3. 3.

    et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 4, 574–578 (2010).

  4. 4.

    et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  5. 5.

    et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

  6. 6.

    et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

  7. 7.

    et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

  8. 8.

    Sensing with Terahertz Radiation (Springer, 2003).

  9. 9.

    & Thz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

  10. 10.

    et al. Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. TeraHz Waves 30, 1319–1337 (2009).

  11. 11.

    et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12, 96–101 (2012).

  12. 12.

    & Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993).

  13. 13.

    et al. Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor. Appl. Phys. Lett. 87, 052107 (2005).

  14. 14.

    et al. Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors. J. Appl. Phys. 108, 054508 (2010).

  15. 15.

    , , , & An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111, 024502 (2012).

  16. 16.

    & The rise of graphene. Nature Mater. 6, 183–191 (2007).

  17. 17.

    , , & Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 201403 (2008).

  18. 18.

    et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

  19. 19.

    et al. Observation of magnetophonon resonance of Dirac fermions in graphite. Phys. Rev. Lett. 105, 227401 (2010).

  20. 20.

    Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys. 45, L923–L925 (2006).

  21. 21.

    Graphene terahertz sources and amplifiers. IEEE Trans. Nanotech. 7, 91–99 (2008).

  22. 22.

    et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

  23. 23.

    , , & Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

  24. 24.

    et al. Hot-carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

  25. 25.

    , , , & Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

  26. 26.

    et al. Observation of electron hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

  27. 27.

    et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

  28. 28.

    et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009).

  29. 29.

    & Fluid Mechanics (Pergamon, 1966).

  30. 30.

    , & Chirality-assisted electronic cloaking of confined states in bilayer graphene. Phys. Rev. Lett. 107, 156603 (2011).

  31. 31.

    & Common-path interference and oscillatory Zener tunneling in bilayer graphene p–n junctions. Proc. Natl Acad. Sci. USA 108, 14021–14025 (2011).

  32. 32.

    et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

  33. 33.

    et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006).

  34. 34.

    et al. Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110, 054512 (2011).

  35. 35.

    et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

  36. 36.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  37. 37.

    et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

  38. 38.

    et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

  39. 39.

    et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

  40. 40.

    et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (2008).

Download references

Acknowledgements

We thank A. H. MacDonald, S. Roddaro and V. Piazza for very fruitful discussions. We acknowledge funding from MIUR-FIRB grant no. RBFR10M5BT and grant no. RBFR10LULP, MISE-ICE grant TERAGRAPH, GIS-TERALAB, GDR2987, GDR-I terahertz, the Region Languedoc-Roussillon, the ERC grant NANOPOTS, EU grants RODIN and GENIUS, a Royal Society Wolfson Research Merit Award, EPSRC grants EP/GO30480/1 and EP/G042357/1, and the Cambridge Nokia Research Centre.

Author information

Affiliations

  1. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy

    • L. Vicarelli
    • , M. S. Vitiello
    • , M. Polini
    • , V. Pellegrini
    •  & A. Tredicucci
  2. Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2 and CNRS, F-34095, Montpellier, France

    • D. Coquillat
    •  & W. Knap
  3. Department of Engineering, Cambridge University, Cambridge CB3 0FA, UK

    • A. Lombardo
    •  & A. C. Ferrari

Authors

  1. Search for L. Vicarelli in:

  2. Search for M. S. Vitiello in:

  3. Search for D. Coquillat in:

  4. Search for A. Lombardo in:

  5. Search for A. C. Ferrari in:

  6. Search for W. Knap in:

  7. Search for M. Polini in:

  8. Search for V. Pellegrini in:

  9. Search for A. Tredicucci in:

Contributions

M.S.V., A.C.F., W.K., V.P. and A.T. devised the experiments. L.V., M.S.V., D.C. and A.L. performed the experiments. M.S.V., D.C., A.C.F., M.P., V.P. and A.T. analysed and modelled the data. M.S.V., A.C.F., M.P., V.P. and A.T. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. S. Vitiello.