Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hidden polymorphs drive vitrification in B2O3

Abstract

Understanding the conditions that favour crystallization or vitrification of liquids has been a long-standing scientific problem1,2,3. Another connected, and not yet well understood question is the relationship between the glassy and the various possible crystalline forms a system may adopt4,5. In this context, B2O3 represents a puzzling case. It is one of the best glass-forming systems despite an apparent lack of low-pressure polymorphism. Furthermore, the system vitrifies in a glassy form abnormally different from the only known crystalline phase at ambient pressure6. Last but not least, it never crystallizes from the melt unless pressure is applied, an intriguing behaviour known as the crystallization anomaly7,8,9. Here, by means of ab initio calculations, we discover the existence of previously unknown B2O3 crystalline polymorphs with structural properties similar to the glass and formation energies comparable to the known ambient crystal. The energy degeneracy of the crystals, which is high at ambient pressure and suppressed under pressure, provides a framework to understand the system’s ability to vitrify and the origin of the crystallization anomaly. This work reconciles the behaviour of B2O3 with that from other glassy systems and reaffirms the role played by polymorphism in a system’s ability to vitrify10,11. Some of the predicted crystals are cage-like materials entirely made of three-fold rings, opening new perspectives for the synthesis of boron-based nanoporous materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Enthalpy as a function of the density for the SiO2 crystalline polymorphs at ambient conditions.
Figure 2: Construction of new B2O3 polymorphs.
Figure 3: Examples of nanoporous structures.
Figure 4: Enthalpy as a function of density for the B2O3 polymorphs.

References

  1. Cohen, M. H. & Turnbull, D. Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131–132 (1961).

    Article  CAS  Google Scholar 

  2. Bhat, M. H. et al. Vitrification of a monoatomic metallic liquid. Nature 448, 787–790 (2007).

    Article  CAS  Google Scholar 

  3. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).

    Article  CAS  Google Scholar 

  4. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  CAS  Google Scholar 

  5. Martin, J. D., Goettler, S. J., Fossé, N. & Iton, L. Designing intermediate-range order in amorphous materials. Nature 419, 381–384 (2002).

    Article  CAS  Google Scholar 

  6. Youngman, R. E., Haubrich, S. T., Zwanziger, J. W., Janicke, M. T. & Chmelka, B. F. Short- and intermediate-range structural ordering in glassy boron oxide. Science 269, 1416–1420 (1995).

    Article  CAS  Google Scholar 

  7. Kracek, F. C., Morey, G. W. & Merwin, H. E. The system water–boron oxide. Am. J. Sci. 35A, 143–171 (1938).

    Google Scholar 

  8. Ulhmann, D. R., Hays, J. F. & Turnbull, D. The effect of high pressure on B2O3: Crystallisation, densification, and the crystallisation anomaly. Phys. Chem. Glasses 8, 1–10 (1967).

    Google Scholar 

  9. Aziz, M. J., Nygren, E., Hays, J. F. & Turnbull, D. Crystal growth kinetics of boron oxide under pressure. J. Appl. Phys. 57, 2233–2242 (1985).

    Article  CAS  Google Scholar 

  10. Wang, R. & Merz, M. D. Non-crystallinity and polymorphism in elemental solids. Nature 260, 35–36 (1976).

    Article  CAS  Google Scholar 

  11. Goodman, C. H. L. Strained mixed-cluster model for glass structure. Nature 257, 370–372 (1975).

    Article  CAS  Google Scholar 

  12. Desiraju, G. R. Crystal gazing: Structure prediction and polymorphism. Science 278, 404–405 (1997).

    Article  CAS  Google Scholar 

  13. Llinàs, A. & Goodman, J. M. Polymorph control: Past, present and future. Drug Discov. Today 13, 198–210 (2008).

    Article  Google Scholar 

  14. Elliot, S. R. Physics of Amorphous Materials (Longman, 1990).

    Google Scholar 

  15. Piccione, P. M. et al. Thermochemistry of pure-silica zeolites. J. Phys. Chem. B 104, 10001–10011 (2000).

    Article  CAS  Google Scholar 

  16. Price, S. L. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42, 117–126 (2009).

    Article  CAS  Google Scholar 

  17. Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  CAS  Google Scholar 

  18. Lee, S. K. et al. Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering. Nature Mater. 4, 851–854 (2005).

    Article  CAS  Google Scholar 

  19. Umari, P. & Pasquarello, A. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra. Phys. Rev. Lett. 95, 137401 (2005).

    Article  CAS  Google Scholar 

  20. Ferlat, G. et al. Boroxol rings in liquid and vitreous B2O3 from first-principles. Phys. Rev. Lett. 101, 065504 (2008).

    Article  Google Scholar 

  21. Huang, L. & Kieffer, J. Thermomechanical anomalies and polyamorphism in B2O3 glass: A molecular dynamics study. Phys. Rev. B 74, 224107 (2006).

    Article  Google Scholar 

  22. Wright, A. C. Borate structures: Crystalline and vitreous. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 51, 1–39 (2010).

    CAS  Google Scholar 

  23. McCulloch, L. A crystalline boric oxide. J. Am. Chem. Soc. 59, 2650–2652 (1937).

    Article  CAS  Google Scholar 

  24. Kline, D., Bray, P. J. & Kriz, H. M. Structure of crystalline boron oxide. J. Chem. Phys. 48, 5277–5278 (1968).

    Article  CAS  Google Scholar 

  25. Takada, A., Catlow, C. R. A. & Price, G. D. Computer modelling of B2O3: I. New interatomic potentials, crystalline phases and predicted polymorphs. J. Phys. Condens. Matter 7, 8659–8692 (1995).

    Article  CAS  Google Scholar 

  26. Takada, A., Catlow, C. R. A. & Price, G. D. Computer synthesis of B2O3 polymorphs. Phys. Chem. Glasses 44, 147–149 (2003).

    CAS  Google Scholar 

  27. Huang, L., Durandurdu, M. & Kieffer, J. New B2O3 crystals predicted from concurrent molecular dynamics simulations and first-principles calculations. J. Phys. Chem. C 111, 13712–13720 (2007).

    Article  CAS  Google Scholar 

  28. Winkler, B., Pickard, C. J., Milman, V. & Thimm, G. Systematic prediction of crystal structures. Chem. Phys. Lett. 337, 36–42 (2001).

    Article  CAS  Google Scholar 

  29. Joo, C., Werner-Zwanziger, U. & Zwanziger, J. W. The ring structure of boron trioxide glass. J. Non-Cryst. Solids 261, 282–286 (2000).

    Article  CAS  Google Scholar 

  30. Shmidt, N. E. Heat capacity and heat of fusion of crystalline boron oxide. Russ. J. Inorg. Chem. 11, 241–247 (1966).

    Google Scholar 

  31. Cole, S. S. & Taylor, N. W. The system Na2O–B2O3 I preparation of crystalline and some of its physical properties. J. Am. Ceram. Soc. 18, 55–58 (1935).

    Article  CAS  Google Scholar 

  32. Kocakusak, S. et al. Production of anhydrous, crystalline boron oxide in fluidized bed reactor. Chem. Eng. Proc. 35, 311–317 (1996).

    Article  CAS  Google Scholar 

  33. Lange, F. F. Chemical solutions routes to single-crystal thin films. Science 273, 903–909 (1996).

    Article  CAS  Google Scholar 

  34. Brunner, G. O. & Meier, W. M. Framework density distribution of zeolite-type tetrahedral nets. Nature 337, 146–147 (1989).

    Article  CAS  Google Scholar 

  35. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  36. Soler, J. M. et al. The Siesta method for ab initio order- N materials systems. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  37. Ferlat, G. et al. Ab initio calculations on borate systems. Eur. J. Glass Sci. Technol. B 47, 441–444 (2006).

    CAS  Google Scholar 

  38. Clark, S. J. et al. First-principles methods using Castep. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  39. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed using HPC resources from GENCI-CINES/IDRIS (Grant x2010081875). We thank Ph. Depondt and E. Lacarce for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.F. and F.M. conceived the study and with M.L. designed the simulations. G.F. implemented the simulations with help from A.P.S., ran the simulation and wrote the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding authors

Correspondence to Guillaume Ferlat or Francesco Mauri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 890 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferlat, G., Seitsonen, A., Lazzeri, M. et al. Hidden polymorphs drive vitrification in B2O3. Nature Mater 11, 925–929 (2012). https://doi.org/10.1038/nmat3416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing