Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ferroelectric memristor

Abstract

Memristors are continuously tunable resistors that emulate biological synapses1,2. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate3,4,5. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged6,7. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers8,9,10 yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth11,12, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tuning resistance and ferroelectric domain configuration with voltage amplitude.
Figure 2: Experimental pulse duration/pulse number phase diagrams.
Figure 3: Tuning resistance by consecutive identical pulses.
Figure 4: Polarization switching dynamics.

References

  1. Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  3. Yang, J. J. et al. Memristive switching mechanisms for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  4. Jo, S. H., Chang, T., Bhadviya, B. B., Mazumder, P. & Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  5. Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).

    Article  CAS  Google Scholar 

  6. Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).

    Article  Google Scholar 

  7. Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).

    Article  CAS  Google Scholar 

  8. Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161 (1971).

    Google Scholar 

  9. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  10. Bibes, M., Grollier, J., Barthélémy, A. & Mage, J-C. Ferroelectric device with adjustable resistance, WO 2010142762 A1 (2010).

  11. Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn 31, 506–510 (1970).

    Article  Google Scholar 

  12. Orihara, H., Hashimoto, S. & Ishibashi, Y. Study on D–E hysteresis loop of TGS based on the Avrami-type model. J. Phys. Soc. Jpn 63, 1601–1610 (1994).

    Article  Google Scholar 

  13. Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).

    Article  CAS  Google Scholar 

  14. Chanthbouala, A et al. Solid-state memories using ferroelectric tunnel junctions. Nature Nanotech. 7, 101–104 (2012).

    Article  CAS  Google Scholar 

  15. Pantel, D., Goetze, S, Hesse, D & Alexe, M. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5, 6032–6038 (2011).

    Article  CAS  Google Scholar 

  16. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  17. Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Article  Google Scholar 

  18. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  19. Catalan, G., Scott, J. F., Schilling, A. & Gregg, J. M. Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19, 022201 (2007).

    Article  Google Scholar 

  20. Catalan, G. et al. Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3 . Phys. Rev. Lett. 100, 027602 (2008).

    Article  CAS  Google Scholar 

  21. Bibes, M. Nanoferronics is a winning combination. Nature Mater. 11, 354–357 (2012).

    Article  CAS  Google Scholar 

  22. Bolten, D., Böttger, U. & Waser, R. Effect of interfaces in Monte Carlo computer simulations of ferroelectric materials. Appl. Phys. Lett. 84, 2379–2381 (2004).

    Article  CAS  Google Scholar 

  23. Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).

    Article  Google Scholar 

  24. Gruverman, A. Wu & Scott, J. F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008).

    Article  CAS  Google Scholar 

  25. Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).

    Article  Google Scholar 

  26. Shin, Y-H., Grinberg, I., Chen, I-W. & Rappe, A.M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007).

    Article  CAS  Google Scholar 

  27. Linares-Barranco, B. & Serrano-Gotarredona, T. Memristance can explain spike-time-dependent-plasticity in neural synapses, Available from Nature Precedings http://hdl.handle.net/10101/npre.2009.3010.1 (2009).

  28. Jo, J. Y. et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys. Rev. Lett. 102, 045701 (2009).

    Article  CAS  Google Scholar 

  29. Du, X. F. & Chen, I. W. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films. J. Appl. Phys. 83, 7789–7798 (1998).

    Article  CAS  Google Scholar 

  30. Tarangtsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    Article  Google Scholar 

  31. Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).

    Article  CAS  Google Scholar 

  32. Pertsev, N.A. et al. Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films. Appl. Phys. Lett. 83, 3356–3358 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Research Council (ERC Advanced Grant No. 267579 and ERC Starting Grant No. 259068) and the French Agence Nationale de la Recherche (ANR) MHANN and NOMILOPS are acknowledged. X.M. acknowledges Herchel Smith Fellowship support. We would like to thank J. F. Scott, B. Dkhil and L. Bellaiche for useful comments.

Author information

Authors and Affiliations

Authors

Contributions

V.G., M.B., A.B. and J.G. designed the experiment. X.M., S.X., H.Y., C.D. and N.D.M. fabricated the samples. A.C., V.G., K.B., S.F. and M.B. performed the measurements. A.C., V.G., R.O.C., M.B., A.B. and J.G. analysed the data. M.B., A.B. and J.G. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Agnès Barthélémy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 924 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chanthbouala, A., Garcia, V., Cherifi, R. et al. A ferroelectric memristor. Nature Mater 11, 860–864 (2012). https://doi.org/10.1038/nmat3415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing