Abstract
Memristors are continuously tunable resistors that emulate biological synapses1,2. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate3,4,5. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged6,7. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers8,9,10 yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth11,12, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Yang, J. J. et al. Memristive switching mechanisms for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).
Jo, S. H., Chang, T., Bhadviya, B. B., Mazumder, P. & Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
Kwon, D-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).
Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).
Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).
Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161 (1971).
Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).
Bibes, M., Grollier, J., Barthélémy, A. & Mage, J-C. Ferroelectric device with adjustable resistance, WO 2010142762 A1 (2010).
Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn 31, 506–510 (1970).
Orihara, H., Hashimoto, S. & Ishibashi, Y. Study on D–E hysteresis loop of TGS based on the Avrami-type model. J. Phys. Soc. Jpn 63, 1601–1610 (1994).
Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).
Chanthbouala, A et al. Solid-state memories using ferroelectric tunnel junctions. Nature Nanotech. 7, 101–104 (2012).
Pantel, D., Goetze, S, Hesse, D & Alexe, M. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5, 6032–6038 (2011).
Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).
Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
Catalan, G., Scott, J. F., Schilling, A. & Gregg, J. M. Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19, 022201 (2007).
Catalan, G. et al. Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3 . Phys. Rev. Lett. 100, 027602 (2008).
Bibes, M. Nanoferronics is a winning combination. Nature Mater. 11, 354–357 (2012).
Bolten, D., Böttger, U. & Waser, R. Effect of interfaces in Monte Carlo computer simulations of ferroelectric materials. Appl. Phys. Lett. 84, 2379–2381 (2004).
Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).
Gruverman, A. Wu & Scott, J. F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008).
Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).
Shin, Y-H., Grinberg, I., Chen, I-W. & Rappe, A.M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007).
Linares-Barranco, B. & Serrano-Gotarredona, T. Memristance can explain spike-time-dependent-plasticity in neural synapses, Available from Nature Precedings http://hdl.handle.net/10101/npre.2009.3010.1 (2009).
Jo, J. Y. et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys. Rev. Lett. 102, 045701 (2009).
Du, X. F. & Chen, I. W. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films. J. Appl. Phys. 83, 7789–7798 (1998).
Tarangtsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).
Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).
Pertsev, N.A. et al. Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films. Appl. Phys. Lett. 83, 3356–3358 (2003).
Acknowledgements
Financial support from the European Research Council (ERC Advanced Grant No. 267579 and ERC Starting Grant No. 259068) and the French Agence Nationale de la Recherche (ANR) MHANN and NOMILOPS are acknowledged. X.M. acknowledges Herchel Smith Fellowship support. We would like to thank J. F. Scott, B. Dkhil and L. Bellaiche for useful comments.
Author information
Authors and Affiliations
Contributions
V.G., M.B., A.B. and J.G. designed the experiment. X.M., S.X., H.Y., C.D. and N.D.M. fabricated the samples. A.C., V.G., K.B., S.F. and M.B. performed the measurements. A.C., V.G., R.O.C., M.B., A.B. and J.G. analysed the data. M.B., A.B. and J.G. wrote the manuscript. All authors discussed the data and contributed to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 924 kb)
Rights and permissions
About this article
Cite this article
Chanthbouala, A., Garcia, V., Cherifi, R. et al. A ferroelectric memristor. Nature Mater 11, 860–864 (2012). https://doi.org/10.1038/nmat3415
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3415
This article is cited by
-
Electric-field-induced crystallization of Hf0.5Zr0.5O2 thin film based on phase-field modeling
npj Quantum Materials (2024)
-
Floating/grounded charged controlled memristor emulator using DVCCTA
Journal of Computational Electronics (2024)
-
Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses
Nano-Micro Letters (2024)
-
Filament-free memristors for computing
Nano Convergence (2023)
-
Implementation of threshold- and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte
NPG Asia Materials (2023)