Unification of trap-limited electron transport in semiconducting polymers

Article metrics


Electron transport in semiconducting polymers is usually inferior to hole transport, which is ascribed to charge trapping on isolated defect sites situated within the energy bandgap. However, a general understanding of the origin of these omnipresent charge traps, as well as their energetic position, distribution and concentration, is lacking. Here we investigate electron transport in a wide range of semiconducting polymers by current–voltage measurements of single-carrier devices. We observe for this materials class that electron transport is limited by traps that exhibit a Gaussian energy distribution in the bandgap. Remarkably, the electron-trap distribution is identical for all polymers considered: the number of traps amounts to 3 × 1023 traps per m3 centred at an energy of ~3.6 eV below the vacuum level, with a typical distribution width of ~0.1 eV. This indicates that the electron traps have a common origin that, we suggest, is most likely related to hydrated oxygen complexes. A consequence of this finding is that the trap-limited electron current can be predicted for any polymer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of electron and hole current.
Figure 2: Electron transport in different polymers.
Figure 3: Schematic representation of the energies of the LUMO and the centre of the trap distribution.
Figure 4: The influence of water complexation on the electron affinity of PPV was studied for three oligomer conformations.
Figure 5


  1. 1

    Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

  2. 2

    Brabec, C. J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

  3. 3

    Blom, P. W. M. & Vissenberg, M. C. J. M. Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater. Sci. Eng.: R 27, 53–94 (2000).

  4. 4

    Tanase, C., Meijer, E. J., Blom, P. W. M. & de Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).

  5. 5

    Pasveer, W. F. et al. Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005).

  6. 6

    Brédas, J. L., Calbert, J. P., Da Silva Filho, D. A. & Cornil, J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

  7. 7

    Blom, P. W. M., de Jong, M. J. M & Vleggaar, J. J. M. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).

  8. 8

    Mandoc, M. M., de Boer, B., Paasch, G. & Blom, P. W. M. Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75, 193202 (2007).

  9. 9

    Graupner, W., Leditzky, G., Leising, G. & Scherf, U. Shallow and deep traps in conjugated polymers of high intrachain order. Phys. Rev. B 54, 7610–7613 (1996).

  10. 10

    Meier, M., Karg, S., Zuleeg, K., Brütting, W. & Schwoerer, M. Determination of trapping parameters in poly(p-phenylenevinylene) light-emitting devices using thermally stimulated currents. J. Appl. Phys. 84, 87–92 (1998).

  11. 11

    Kuik, M. et al. Determination of the trap-assisted recombination strength in polymer light emitting diodes. Appl. Phys. Lett. 98, 093301 (2011).

  12. 12

    Wetzelaer, G. A. H., Kuik, M., Nicolai, H. T. & Blom, P. W. M. Trap-assisted and Langevin-type recombination in organic light-emitting diodes. Phys. Rev. B 83, 165204 (2011).

  13. 13

    Kuik, M., Koster, L. J. A., Wetzelaer, G. A. H. & Blom, P. W. M. Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011).

  14. 14

    Nicolai, H. T., Mandoc, M. M. & Blom, P. W. M. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011).

  15. 15

    Zhang, Y., de Boer, B. & Blom, P. W. M. Trap-free electron transport in poly(p -phenylene vinylene) by deactivation of traps with n-type doping. Phys. Rev. B 81, 085201 (2010).

  16. 16

    Chua, L-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

  17. 17

    Nicolai, H. T. et al. Space-charge-limited hole current in poly(9,9-dioctylfluorene) diodes. Appl. Phys. Lett. 96, 172107 (2010).

  18. 18

    Tanase, C., Blom, P. W. M., de Leeuw, D. M. & Meijer, E. J. Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Status Solidi A 201, 1236–1245 (2004).

  19. 19

    Kuik, M. et al. Optical detection of deep electron traps in poly(p-phenylene vinylene) light-emitting diodes. Appl. Phys. Lett. 99, 183305 (2011).

  20. 20

    Fung, M. K. et al. Role of ytterbium and ytterbium/cesium fluoride on the chemistry of poly(9,9-dioctylfluorene-co-benzothiadiazole) as investigated by photoemission spectroscopy. J. Appl. Phys. 94, 2686–2694 (2003).

  21. 21

    Gwinner, M. C. et al. Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors. Adv. Funct. Mater. 20, 3457–3465 (2010).

  22. 22

    Mühlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

  23. 23

    Aygül, U. et al. Electronic properties of interfaces between PCPDTBT and prototypical electrodes studied by photoemission spectroscopy. ChemPhysChem 12, 2345–2351 (2011).

  24. 24

    Al-Ibrahim, M. et al. Phenylene-ethynylene/phenylene-vinylene hybrid polymers: Optical and electrochemical characterization, comparison with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] and application in flexible polymer solar cells. Thin Solid Films 474, 201–210 (2005).

  25. 25

    Guan, Z-L. et al. Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Org. Electron. 11, 1779–1785 (2010).

  26. 26

    Thakur, A. K., Mukherjee, A. K., Preethichandra, D. M. G., Takashima, W. & Kaneto, K. Charge injection mechanism across the Au-poly(3-hexylthiophene-2,5-diyl) interface. J. Appl. Phys. 101, 104508 (2007).

  27. 27

    Lee, J. U., Kim, Y. D., Jo, J. W., Kim, J. P. & Jo, W. H. Efficiency enhancement of P3HT/PCBM bulk heterojunction solar cells by attaching zinc phthalocyanine to the chain-end of P3HT. J. Mater. Chem. 21, 17209–17218.

  28. 28

    Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

  29. 29

    Tseng, H-E., Peng, K-Y. & Chen, S-A. Molecular oxygen and moisture as traps in poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene]: Locations and detrapping by chain relaxation. Appl. Phys. Lett. 82, 4086–4088 (2003).

  30. 30

    Kažukauskas, V. Investigation of carrier transport and trapping by oxygen-related defects in MEH–PPV diodes. Semicond. Sci. Technol. 19, 1373–1380 (2004).

  31. 31

    De Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

  32. 32

    Anthopoulos, T. D., Anyfantis, G. C., Papavassiliou, G. C. & de Leeuw, D. M. Air-stable ambipolar organic transistors. Appl. Phys. Lett. 90, 122105 (2007).

  33. 33

    Simmons, J. G. & Taylor, G. W. High-field isothermal currents and thermally stimulated currents in insulators having discrete trapping levels. Phys. Rev. B 5, 1619–1629 (1972).

  34. 34

    Lang, D. V. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974).

  35. 35

    Werner, A. G., Blochwitz, J., Pfeiffer, M. & Leo, K. Field dependence of thermally stimulated currents in Alq3 . J. Appl. Phys. 90, 123–125 (2001).

  36. 36

    Steiger, J., Schmechel, R. & von Seggern, H. Energetic trap distributions in organic semiconductors. Synth. Met. 129, 1–7 (2002).

  37. 37

    Xing, K. et al. The interaction of poly (p-phenylenevinylene) with air. Adv. Mater. 8, 971–974 (1996).

  38. 38

    Sutherland, D. G. J. et al. Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy. Appl. Phys. Lett. 68, 2046–2048 (1996).

  39. 39

    Xing, K. Z. et al. Photo-oxidation of poly(p-phenylenevinylene). Adv. Mater. 9, 1027–1031 (2004).

  40. 40

    Zhuo, J. et al. Direct spectroscopic evidence for a photodoping mechanism in polythiophene and poly(bithiophene-alt-thienothiophene) organic semiconductor thin films involving oxygen and sorbed moisture. Adv. Mater. 21, 4747–4752 (2009).

  41. 41

    Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC, 2011).

  42. 42

    Bell, A. J. & Wright, T. G. Structures and binding energies of O2–·H2O and O2·H2O. Phys. Chem. Chem. Phys. 6, 4385–4390 (2004).

  43. 43

    Gomes, J. A. G. et al. Experimental and theoretical study of the atmospherically important O2H2O complex. Spectrochim. Acta A 61, 3082–3086 (2005).

  44. 44

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

  45. 45

    Klamt, A. & Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993).

  46. 46

    Andzelm, J., Kölmel, C. & Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).

  47. 47

    Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

  48. 48

    Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

  49. 49

    Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian, 2009).

  50. 50

    Moet, D. J. D., de Bruyn, P. & Blom, P. W. M. High work function transparent middle electrode for organic tandem solar cells. Appl. Phys. Lett. 96, 153504 (2010).

Download references


The authors thank M. Lenes, Y. Zhang, M. Mandoc and M. Lu for their contributions to this work and J. Harkema for technical support. The work at the University of Groningen was supported by the European Commission under contract FP7-13708 (AEVIOM). The work at Georgia Tech was supported by the MRSEC Program of the National Science Foundation under Award Number DMR-0819885.

Author information

P.W.M.B. and B.d.B. proposed and supervised the project. H.T.N., M.K. and G.A.H.W. carried out experiments. H.T.N. and M.K. analysed the electron transport data. J.L.B. supervised the quantum-chemical calculations. C.C. and C.R. carried out the quantum-chemical calculations and C.R. analysed the data. H.T.N., C.R. and J.L.B. wrote the manuscript.

Correspondence to P. W. M. Blom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 798 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading