Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces

Abstract

Label-free detection of the material composition of nanoparticles could be enabled by the quantification of the nanoparticles’ inherent dielectric response to an applied electric field. However, the sensitivity of dielectric nanoscale objects to geometric and non-local effects makes the dielectric response extremely weak. Here we show that electrostatic force microscopy with sub-piconewton resolution can resolve the dielectric constants of single dielectric nanoparticles without the need for any reference material, as well as distinguish nanoparticles that have an identical surface but different inner composition. We unambiguously identified unlabelled ~10 nm nanoparticles of similar morphology but different low-polarizable materials, and discriminated empty from DNA-containing virus capsids. Our approach should make the in situ characterization of nanoscale dielectrics and biological macromolecules possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dielectric constant measurement and material identification of individual dielectric nanoparticles in multiple experiments.
Figure 2: Effect of geometrical parameters. Tip radius and nanoparticle diameter as a function of the dielectric constants obtained in multiple experiments with PS (blue), SiO2 (green) and Al2O3 (red) nanoparticles.
Figure 3: Material identification of multi-component mixtures of dielectric nanoparticles.
Figure 4: Dielectric constant measurement and material identification of the bacteriophage T7 virus and capsid.
Figure 5: Measured dielectric constants of DNA-containing viruses and capsids, and discrimination of their inner composition.
Figure 6: Estimation of the dielectric constant of condensed DNA in the bacteriophage T7 using a core–shell model.

Similar content being viewed by others

References

  1. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  2. Chen, H-Y., Lo, M. K. F., Yang, G., Monbouquette, H. G. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nature Nanotech. 3, 543–547 (2008).

    Article  CAS  Google Scholar 

  3. Van Schooneveld, M. M. et al. Imaging and quantifying the morphology of an organic–inorganic nanoparticle at the sub-nanometre level. Nature Nanotech. 5, 538–544 (2010).

    Article  CAS  Google Scholar 

  4. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  5. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2008).

    Article  Google Scholar 

  6. Davis, M. E., Chen, Z. & Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Rev. Drug. Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  7. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  8. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy. Nano Lett. 7, 3177–3181 (2007).

    Article  CAS  Google Scholar 

  9. Stadler, J., Schmid, T. & Zenobi, R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10, 4514–4520 (2010).

    Article  CAS  Google Scholar 

  10. Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photon. 4, 46–49 (2010).

    Article  CAS  Google Scholar 

  11. Person, S., Deutsch, B., Mitra, A. & Novotny, L. Material-specific detection and classification of single nanoparticles. Nano Lett. 11, 257–261 (2011).

    Article  CAS  Google Scholar 

  12. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Mater. 10, 352–356 (2011).

    Article  CAS  Google Scholar 

  13. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    Article  CAS  Google Scholar 

  14. Stroh, C. et al. Single-molecule recognition imaging microscopy. Proc. Natl Acad. Sci. USA 101, 12503–12507 (2004).

    Article  CAS  Google Scholar 

  15. García, R., Magerle, R. & Perez, R. Nanoscale compositional mapping with gentle forces. Nature Mater. 6, 405–411 (2007).

    Article  Google Scholar 

  16. Sinensky, A. K. & Belcher, A. M. Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. Nature Nanotech. 2, 653–659 (2007).

    Article  CAS  Google Scholar 

  17. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  18. Lee, D. T., Pelz, J. P. & Bhushan, B. Scanning capacitance microscopy for thin film measurements. Nanotechnology 17, 1484–1491 (2006).

    Article  CAS  Google Scholar 

  19. Hu, J., Xiao, X. & Salmeron, M. Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers. Appl. Phys. Lett. 67, 476–478 (1995).

    Article  CAS  Google Scholar 

  20. Shao, R., Kalinin, S. V. & Bonnell, D. A. Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869–1871 (2003).

    Article  CAS  Google Scholar 

  21. Pingree, L. S. C. & Hersam, M. C. Bridge-enhanced nanoscale impedance microscopy. Appl. Phys. Lett. 87, 233117 (2005).

    Article  Google Scholar 

  22. Pingree, L. S. C., Russell, M. T., Scott, B. J., Marks, T. J. & Hersam, M. C. Probing individual nanoscale organic light-emitting diodes with atomic force electroluminescence microscopy and bridge-enhanced nanoscale impedance microscopy. Org. Electr. 8, 465–479 (2007).

    Article  CAS  Google Scholar 

  23. Kathan-Galipeau, K. et al. Direct probe of molecular polarization in de novo protein electrode interfaces. ACS Nano 5, 4835–4842 (2011).

    Article  CAS  Google Scholar 

  24. Lai, K. et al. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett. 9, 1265–1269 (2009).

    Article  CAS  Google Scholar 

  25. Fumagalli, L., Ferrari, G., Sampietro, M. & Gomila, G. Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy. Appl. Phys. Lett. 91, 243110 (2007).

    Article  Google Scholar 

  26. Gomila, G., Toset, J. & Fumagalli, L. Nanoscale capacitance microscopy of thin dielectric films. J. Appl. Phys. 104, 024315 (2008).

    Article  Google Scholar 

  27. Fumagalli, L., Ferrari, G., Sampietro, M. & Gomila, G. Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes. Nano Lett. 9, 1604–1608 (2009).

    Article  CAS  Google Scholar 

  28. Gramse, G., Casuso, I., Toset, J., Fumagalli, L. & Gomila, G. Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy. Nanotechnology 20, 395702 (2009).

    Article  CAS  Google Scholar 

  29. Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M. A. & Gomila, G. Quantifying the dielectric constant of thick insulators using electrostatic force microscopy. Appl. Phys. Lett 96, 183107 (2010).

    Article  Google Scholar 

  30. Cherniavskaya, O., Chen, L., Weng, L., Yuditsky, L. & Brus, L-E. Quantitative noncontact electrostatic force imaging of nanocrystal polarizability. J. Phys. Chem. B 107, 1525–1531 (2003).

    Article  CAS  Google Scholar 

  31. Ben-Porat, C. H., Cherniavskaya, O., Brus, L., Cho, K-S. & Murray, C. B. Electric fields on oxidized silicon surfaces: Static polarization of PbSe nanocrystals. J. Phys. Chem. A 108, 7814–7819 (2004).

    Article  CAS  Google Scholar 

  32. Bockrath, M. et al. Scanned conductance microscopy of carbon nanotubes and λ-DNA. Nano Lett. 2, 187–190 (2002).

    Article  CAS  Google Scholar 

  33. Lu, W., Wang, D. & Chen, L. Near-static dielectric polarization of individual carbon nanotubes. Nano Lett. 7, 2729–2733 (2007).

    Article  CAS  Google Scholar 

  34. Lu, W. et al. A scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett. 9, 1668–1672 (2009).

    Article  CAS  Google Scholar 

  35. Agirrezabala, X. et al. Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J. 24, 3820–3829 (2005).

    Article  CAS  Google Scholar 

  36. Ionel, A. et al. Molecular rearrangements involved in the capsid shell maturation of bacteriophage T7. J. Biol. Chem. 286, 234–242 (2011).

    Article  CAS  Google Scholar 

  37. Carrasco, C. et al. The capillarity of nanometric water menisci confinedinside closed-geometry viral cages. Proc. Natl Acad. Sci. USA 106, 5475–5480 (2009).

    Article  CAS  Google Scholar 

  38. Giordano, S. Dielectric and elastic characterization of nonlinear heterogeneous materials. Materials 2, 1417–1479 (2009).

    Article  CAS  Google Scholar 

  39. Harvey, S. C. & Hoekstra, P. Dielectric relaxation spectra of adsorbed water on lyzozyme. J. Phys. Chem. 76, 2987–2994 (1972).

    Article  CAS  Google Scholar 

  40. Gascoyne, P. & Pethig, R. Effective dipole moment of protein-bound water. J. Chem. Soc. Faraday Trans. 77, 1733–1735 (1981).

    Article  CAS  Google Scholar 

  41. Schutz, C. N. & Warshel, A. What are the dielectric constants of proteins and how to validate electrostatic models? Proteins 44, 400–417 (2001).

    Article  CAS  Google Scholar 

  42. Yang, L., Weerasinghe, S., Smith, P. E. & Pettitt, P. M. Dielectric response of triplex DNA in ionic solution from simulations. Biophys. J. 69, 1519–1527 (1995).

    Article  CAS  Google Scholar 

  43. Cohen, H. et al. Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett. 7, 981–986 (2007).

    Article  CAS  Google Scholar 

  44. Gomez-Navarro, C. et al. Contactless experiments on individual DNA molecules show no evidence for molecular wire behaviour. Proc. Natl Acad. Sci. USA 99, 8484–8487 (2002).

    Article  CAS  Google Scholar 

  45. Jin, R. & Breslauer, K. J. Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)]poly[d(AT)]duplex. Proc. Natl Acad. Sci. USA 85, 8939–8942 (1988).

    Article  CAS  Google Scholar 

  46. Barawkar, D. A. & Ganesh, K. N. Fluorescent d(CGCGAATTCGCG): Characterization of major groove polarity and study of minor groove interactions through a major groove semantophore conjugate. Nucl. Acids Res. 23, 159–164 (1995).

    Article  CAS  Google Scholar 

  47. Williams, L. R. & Maher, L. J. III Electrostatic mechanisms of DNA deformation. Annu. Rev. Biophys. Biomol. Struct. 29, 497–521 (2000).

    Article  CAS  Google Scholar 

  48. Lamm, G. & Pack, G. R. Calculation of dielectric constants near polyelectrolytes in solution. J. Phys. Chem. 101, 959–965 (1997).

    Article  CAS  Google Scholar 

  49. Young, M. A., Jayaram, B. & Beveridge, D. L. Local dielectric environment of B-DNA in solution: Results from a 14 ns molecular dynamics trajectory. J. Phys. Chem. B 102, 7666–7669 (1998).

    Article  CAS  Google Scholar 

  50. He, L., Ozdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotech. 6, 428–432 (2011).

    Article  CAS  Google Scholar 

  51. Fraikin, J-L. et al. A high-throughput label-free nanoparticle analyser. Nature Nanotech. 6, 308–313 (2011).

    Article  CAS  Google Scholar 

  52. Daaboul, G. G. et al. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett. 10, 4727–4731 (2010).

    Article  CAS  Google Scholar 

  53. Gomez-Monivas, S., Froufe-Perez, L. S., Caamano, A. & Saenz, J. J. Electrostatic forces between sharp tips and metallic and dielectric samples. Appl. Phys. Lett. 79, 4048–4050 (2001).

    Article  CAS  Google Scholar 

  54. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  55. Sambrook, J, Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbour Laboratory Press, 1989).

    Google Scholar 

Download references

Acknowledgements

The authors thank Nanotec Electronica for technical assistance, G. Gramse, M. A. Edwards and E. Torrents for discussions, and D. Normanno for comments on the manuscript. This work was supported by the Spanish MEC under grants TEC2010-16844 and BFU2011-29038-C02-1, by the Comunidad de Madrid grant S-2009/MAT-1507, and by the EU commission under grant FP7-NMP 228685-2. G.G. acknowledges support from a grant of the Spanish–Catalan I3 Program.

Author information

Authors and Affiliations

Authors

Contributions

L.F. did the experiments, performed the data analysis and wrote the paper. G.G. did the theoretical modelling and helped write the paper. D.E-F. implemented the finite-element calculations. A.C. prepared the viruses and performed electron microscopy and composition analysis of them. L.F. and G.G. designed the study with J.L.C. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Laura Fumagalli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fumagalli, L., Esteban-Ferrer, D., Cuervo, A. et al. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nature Mater 11, 808–816 (2012). https://doi.org/10.1038/nmat3369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3369

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research