Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides

Abstract

The induction of autophagy on exposure of cells to a variety of nanoparticles represents both a safety concern and an application niche for engineered nanomaterials. Here, we show that a short synthetic peptide, RE-1, identified by means of phage display, binds to lanthanide (LN) oxide and upconversion nanocrystals (UCN), forms a stable coating layer on the nanoparticles’ surface, and effectively abrogates their autophagy-inducing activity. Furthermore, RE-1 peptide variants exhibit a differentially reduced binding capability, and correspondingly, a varied ability to reduce the autophagic response. We also show that the addition of an arginine–glycine–aspartic acid (RGD) motif to RE-1 enhances autophagy for LN UCN through the interaction with integrins. RE-1 and its variants provide a versatile tool for tuning material–cell interactions to achieve the desired level of autophagy, and may prove useful for the various diagnostic and therapeutic applications of LN-based nanomaterials and nanodevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phage display identifies a specific high-affinity binding peptide RE-1 for LN nanomaterials.
Figure 2: RE-1 forms a stable coating layer on the surface of UCN.
Figure 3: RE-1 coating abrogates autophagy induction and toxicity for UCN in HeLa cells.
Figure 4: RE-1 coating abrogates autophagy induction and toxicity for LN UCN in vivo.
Figure 5: Reduction of nanocrystal-surface interaction by RE-1 coating.
Figure 6: Enhancement of cell interaction and autophagy induction by coating with RE-1-RGD.

Similar content being viewed by others

References

  1. Klionsky, D. J. Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  Google Scholar 

  2. Mizushima, N. Autophagy: Process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  Google Scholar 

  3. Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Phys. Rev. 90, 1383–1435 (2010).

    CAS  Google Scholar 

  4. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  5. Levine, B. Cell biology—autophagy and cancer. Nature 446, 745–747 (2007).

    Article  CAS  Google Scholar 

  6. Pan, T. H., Kondo, S., Le, W. & Jankovic, J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131, 1969–1978 (2008).

    Article  Google Scholar 

  7. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  Google Scholar 

  8. Zabirnyk, O., Yezhelyev, M. & Seleverstov, O. Nanoparticles as a novel class of autophagy activators. Autophagy 3, 278–281 (2007).

    Article  CAS  Google Scholar 

  9. Stern, S. T. et al. Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol. Sci. 106, 140–152 (2008).

    Article  CAS  Google Scholar 

  10. Man, N., Yu, L., Yu, S. H. & Wen, L. P. Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy 6, 310–311 (2010).

    Article  CAS  Google Scholar 

  11. Seleverstov, O. et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett. 6, 2826–2832 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, Q. et al. Autophagy-mediated chemosensitization in cancer cells by fullerene 60C nanocrystal. Autophagy 5, 1107–1117 (2009).

    Article  CAS  Google Scholar 

  13. Wei, P. F., Zhang, L., Lu, Y., Man, N. & Wen, L. P. 60C (Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 21, 5101–5111 (2010).

    Google Scholar 

  14. Liu, H. L. et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis. 2, 159–165 (2011).

    Article  Google Scholar 

  15. Chen, Y., Yang, L., Feng, C. & Wen, L. P. Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem. Biophys. Res. Commun. 337, 52–60 (2005).

    Article  CAS  Google Scholar 

  16. Yu, L., Lu, Y., Yu, S. H. & Wen, L. P. Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small 5, 2784–2787 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, Y., Yu, C., Huang, G., Wang, C. & Wen, L. P. Nano rare-earth oxides induced size-dependent vacuolization: An independent pathway from autophagy. Int. J. Nanomed. 5, 601–609 (2010).

    Article  CAS  Google Scholar 

  18. Li, C. G. et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J. Mol. Cell Biol. 1, 37–45 (2009).

    Article  CAS  Google Scholar 

  19. Li, J. J., Hartono, D., Ong, C. N., Bay, B. H. & Yung, L. Y. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31, 5996–6003 (2010).

    Article  CAS  Google Scholar 

  20. Wu, Y. N. et al. The selective growth inhibition of oral cancer by iron core–gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32, 4565–4573 (2011).

    Article  CAS  Google Scholar 

  21. Ma, X. W. et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5, 8629–8639 (2011).

    Article  CAS  Google Scholar 

  22. Yu, J. X. & Li, T. H. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci. 1, 19–27 (2011).

    Article  Google Scholar 

  23. Stern, S. T. & Johnson, D. N. Role for nanomaterial–autophagy interaction in neurodegenerative disease. Autophagy 4, 1097–1100 (2008).

    Article  CAS  Google Scholar 

  24. Li, H. Y., Li, Y. H., Jiao, J. & Hu, H. M. Alpha–alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature Nanotech. 6, 645–650 (2011).

    Article  CAS  Google Scholar 

  25. Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010).

    Article  CAS  Google Scholar 

  26. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  27. Dutta, D. et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303–315 (2007).

    Article  CAS  Google Scholar 

  28. Bakota, E. L., Aulisa, L., Tsyboulski, D. A., Weisman, R. B. & Hartgerink, J. D. Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules 10, 2201–2206 (2009).

    Article  CAS  Google Scholar 

  29. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  30. Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. & Stone, M. O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater. 1, 169–172 (2002).

    Article  CAS  Google Scholar 

  31. Wang, S. Q. et al. Peptides with selective affinity for carbon nanotubes. Nature Mater. 2, 196–200 (2003).

    Article  Google Scholar 

  32. Kriplani, U. & Kay, B. K. Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr. Opin. Biotechnol. 16, 470–475 (2005).

    Article  CAS  Google Scholar 

  33. Lee, S. W., Mao, C., Flynn, C. E. & Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  34. Chen, H. B., Su, X., Neoh, K. G. & Choe, W. S. Probing the interaction between peptides and metal oxides using point mutants of a TiO2-binding peptide. Langmuir 24, 6852–6857 (2008).

    Article  CAS  Google Scholar 

  35. Goede, K., Busch, P. & Grundmann, M. Binding specificity of a peptide on semiconductor surfaces. Nano Lett. 4, 2115–2120 (2004).

    Article  CAS  Google Scholar 

  36. Cho, N. H. et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nature Nanotech. 6, 675–682 (2011).

    Article  CAS  Google Scholar 

  37. Barth, S., Glick, D. & Macleod, K. F. Autophagy: Assays and artifacts. J. Pathol. 221, 117–24 (2010).

    Article  CAS  Google Scholar 

  38. Xiong, L., Yang, T., Yang, Y., Xu, C. & Li, F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31, 7078–7085 (2010).

    Article  CAS  Google Scholar 

  39. Abdul, J. R. & Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29, 4122–4128 (2008).

    Article  Google Scholar 

  40. Johnson-Lyles, D. N. et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 248, 249–58 (2010).

    Article  CAS  Google Scholar 

  41. Monick, M. M. et al. Identification of an autophagy defect in smokers’ alveolar macrophages. J. Immunol. 185, 5425–35 (2010).

    Article  CAS  Google Scholar 

  42. Cho, E. C., Zhang, Q. & Xia, Y. N. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotech. 6, 385–391 (2011).

    Article  CAS  Google Scholar 

  43. Chen, K. & Chen, X. Y. Integrin targeted delivery of chemotherapeutics. Theranostics 1, 189–200 (2011).

    Article  CAS  Google Scholar 

  44. Van Vlerken, L. E., Vyas, T. K. & Amiji, M. M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharmaceutical Res. 24, 1405–1414 (2007).

    Article  CAS  Google Scholar 

  45. Xie, J., Xu, C., Kohler, N., Hou, Y. & Sun, S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv. Mater. 19, 3163–3166 (2007).

    Article  CAS  Google Scholar 

  46. Bretscher, M. S. Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J. 8, 1341–1348 (1989).

    Article  CAS  Google Scholar 

  47. Zhang, Y. & Li, Z. Q. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 606–610 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Chinese Ministry of Sciences 973 Program (2010CB912804), Natural Science Foundation of China (#30830036, #31170966, #31071211), and the Fundamental Research Funds for the Central Universities (WK2070000008).

Author information

Authors and Affiliations

Authors

Contributions

Yunjiao Z. and L-P.W. conceived and designed the experiments. Yunjiao Z., F.Z., T.Y., Y.L., W.Z., N.M., L.Z. and N.J. performed the experiments. Q.D., Yong Z. and Z.L. synthesized the UCN nanocrystals. Yunjiao Z. and L-P.W. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Long-Ping Wen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zheng, F., Yang, T. et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nature Mater 11, 817–826 (2012). https://doi.org/10.1038/nmat3363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3363

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research