Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication

Abstract

The spatial organization of porous coordination polymer (PCP) crystals into higher-order structures is critical for their integration into separation systems, heterogeneous catalysts, ion/electron transport and photonic devices. Here, we demonstrate a rapid method to spatially control the nucleation site, leading to the formation of mesoscopic architecture made of PCPs, in both two and three dimensions. Inspired by geological processes, this method relies on the morphological replacement of a shaped sacrificial metal oxide used both as a metal source and as an ‘architecture-directing agent’ by an analogous PCP architecture. Spatiotemporal harmonization of the metal oxide dissolution and the PCP crystallization allowed the preservation of very fine mineral morphological details of periodic alumina inverse opal structures. The replication of randomly structured alumina aerogels resulted in a PCP architecture with hierarchical porosity in which the hydrophobic micropores of the PCP and the mesopores/macropores inherited from the parent aerogels synergistically enhanced the material’s selectivity and mass transfer for water/ethanol separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The coordination replication and mesoscopic architecture concept.
Figure 2: Coordination replication to form two- and three-dimensional mesoscopic architectures based on a porous aluminium coordination polymer.
Figure 3: Time-course monitoring of the coordination replication by FESEM.
Figure 4: Schematic view of the coordination replication mechanism.
Figure 5: Replication of randomly structured alumina aerogels for the formation of mesoscopic PCP architectures used as water/ethanol separation systems.
Figure 6: Water/ethanol separation with the mesoscopic PCP architecture, Meso-PCP or Macro-PCP.

Similar content being viewed by others

References

  1. Putnis, A. Mineral replacement reactions. Rev. Miner. Geochem. 70, 87–124 (2009).

    Article  CAS  Google Scholar 

  2. Antonietti, M. & Ozin, G. A. Promises and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10, 28–41 (2004).

    Article  CAS  Google Scholar 

  3. Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  Google Scholar 

  4. Xia, F. et al. Novel route to synthesize complex metal sulfides: Hydrothermal coupled dissolution-reprecipitation replacement reactions. Chem. Mater. 20, 2809–2817 (2008).

    Article  CAS  Google Scholar 

  5. Roy, D. M. & Linneham, S. K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247, 220–222 (1974).

    Article  CAS  Google Scholar 

  6. Anderson, M. W., Holmes, S. M., Hanif, N. & Cundy, C. S. Hierarchical pore structures through diatom zeolitization. Angew. Chem. Int. Ed. 39, 2707–2710 (2000).

    Article  CAS  Google Scholar 

  7. Xia, F. et al. Three-dimensional ordered arrays of zeolite nanocrystals with uniform size and orientation by a pseudomorphic coupled dissolution-reprecipitation replacement route. Cryst. Growth Des. 9, 4902–4906 (2009).

    Article  CAS  Google Scholar 

  8. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  9. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  10. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  11. Dincă, M. & Long, J. R. Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 47, 6766–6779 (2008).

    Article  Google Scholar 

  12. Blake, A. J. et al. Photoreactivity examined through incorporation in metal–organic frameworks. Nature Chem. 2, 688–694 (2010).

    Article  CAS  Google Scholar 

  13. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    Article  CAS  Google Scholar 

  14. Zhao, X. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal–organic frameworks. Science 306, 1012–1015 (2004).

    Article  CAS  Google Scholar 

  15. Seo, J. S. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  16. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

  17. Takashima, Y. et al. Molecular decoding using luminescence from an entangled porous framework. Nature Commun. 2, 168 (2011).

    Article  Google Scholar 

  18. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem. 1, 705–710 (2009).

    Article  CAS  Google Scholar 

  19. Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    Article  CAS  Google Scholar 

  20. Zacher, D., Shekhah, O., Wöll, C. & Fischer, R. A. Thin films of metal organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  21. Falcaro, P. et al. A new method to position and functionalize metal organic framework crystals. Nature Commun. 2, 237 (2011).

    Article  Google Scholar 

  22. Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).

    Article  CAS  Google Scholar 

  23. Schoedel, A., Scherb, C. & Bein, T. Oriented nanoscale films of metal–organic frameworks by room-temperature gel-layer synthesis. Angew. Chem. Int. Ed. 49, 7225–7228 (2010).

    Article  CAS  Google Scholar 

  24. Wu, Y. et al. Metal–organic frameworks with a three-dimensional ordered macroporous structure: Dynamic photonic materials. Angew. Chem. Int. Ed. 50, 12518–12522 (2011).

    Article  CAS  Google Scholar 

  25. Gascon, J., Aguado, S. & Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Micropor. Mesopor. Mater. 113, 132–138 (2008).

    Article  CAS  Google Scholar 

  26. Horcajada, P. et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv. Mater. 21, 1931–1935 (2009).

    Article  CAS  Google Scholar 

  27. Stumm, W. & Wollast, R. Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals. Rev. Geophys. 28, 53–69 (1990).

    Article  Google Scholar 

  28. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  29. Holland, B. T., Blanford, C. F. & Stein, A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538–540 (1998).

    Article  CAS  Google Scholar 

  30. Comotti, A. et al. Nannochannels of two distinct cross-sections in a porous Al-based coordination polymer. J. Am. Chem. Soc. 130, 13664–13672 (2008).

    Article  CAS  Google Scholar 

  31. Putnis, A. & Putnis, C. V. The mechanism of reequilibration of solids in the presence of a fluid phase. J. Solid State Chem. 180, 1783–1786 (2007).

    Article  CAS  Google Scholar 

  32. Volkringer, C. et al. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal–organic framework aluminium trimesate MIL-100. Chem. Mater. 21, 5695–5697 (2009).

    Article  CAS  Google Scholar 

  33. Loiseau, T. et al. A rationale for the large breathing of the porous aluminium terephtalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  34. Vane, L. M. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels, Bioprod. Bioref. 2, 553–588 (2008).

    Article  CAS  Google Scholar 

  35. Rezaei, F. & Webley, P. Structured adsorbents in gas separation processes. Sep. Pur. Tech. 70, 243–256 (2010).

    Article  CAS  Google Scholar 

  36. Rolison, D. R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299, 1698–1701 (2003).

    Article  CAS  Google Scholar 

  37. Tokudome, Y. et al. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. J. Colloid Interface Sci. 338, 506–513 (2009).

    Article  CAS  Google Scholar 

  38. Bárcia, P. S. et al. Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal–organic framework. J. Phys. Chem. B 111, 6101–6103 (2007).

    Article  Google Scholar 

  39. Schwertmann, U. Solubility and dissolution of iron oxides. Plant Soil 130, 1–25 (1991).

    Article  CAS  Google Scholar 

  40. Ludwig, C., Casey, W. H. & Rock, P. A. Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature 375, 44–47 (1995).

    Article  CAS  Google Scholar 

  41. Guo, H., Zhu, G., Hewitt, I. J. & Qiu, S. Twin Copper Source growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2 . J. Am. Chem. Soc. 131, 1646–1647 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Morone, the support from CeMI, and T. Tsuruoka for assistance with measurement for FESEM and K. Shiomi for assistance with breakthrough experiments. iCeMS is supported by World Premier International Research Initiative, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.F., J.R. and S.K. conceived and designed the experiments. J.R., N.H. and M.T. performed all synthetic and characterization experiments. S.F., K.H., H.U., M.K., N.L. and O.S. carried out synchrotron X-ray diffraction measurements. J.R. carried out water/ethanol separation experiments. J.R. and S.F. analysed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shuhei Furukawa or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reboul, J., Furukawa, S., Horike, N. et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Mater 11, 717–723 (2012). https://doi.org/10.1038/nmat3359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing