Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide

Abstract

The selective capture of carbon dioxide in porous materials has potential for the storage and purification of fuel and flue gases. However, adsorption capacities under dynamic conditions are often insufficient for practical applications, and strategies to enhance CO2–host selectivity are required. The unique partially interpenetrated metal–organic framework NOTT-202 represents a new class of dynamic material that undergoes pronounced framework phase transition on desolvation. We report temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO2. The CO2 isotherm shows three steps in the adsorption profile at 195 K, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations. Adsorption of N2, CH4, O2, Ar and H2 exhibits reversible isotherms without hysteresis under the same conditions, and this allows capture of gases at high pressure, but selectively leaves CO2 trapped in the nanopores at low pressure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chemical structure of H4L.
Figure 2: X-ray crystal structures of NOTT-202 and NOTT-202a.
Figure 3: Representation of self-assembly and interpenetration in three-dimensional MOF materials.
Figure 4: CO2 sorption isotherms and variation of thermodynamic parameters Qst and ΔS as a function of CO2 uptake in NOTT-202a.
Figure 5: In situ synchrotron X-ray powder diffraction patterns and Le Bail refinement results for NOTT-202a.
Figure 6: Comparisons of low-pressure CO2, CH4, N2, Ar, O2 and H2 sorption isotherms at 195 K.

References

  1. Magudeswaran, P. N., George, S. & John, J. Reduction of global warming gas emissions from the manufacture of portland cement using high volume fly ash concrete. Nature Environ. Pollut. Technol. 6, 495–497 (2007).

    CAS  Google Scholar 

  2. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  3. Long, J. R. & Yaghi, O. M. (eds) Special issue on metal–organic frameworks. Chem. Soc. Rev. 38, 1201–1507 (2009).

  4. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    Article  CAS  Google Scholar 

  5. Sumida, K. et al. Hydrogen and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (FE-BTT) discovered via high-throughput methods. Chem. Sci. 1, 184–191 (2010).

    Article  CAS  Google Scholar 

  6. Millward, A. R. & Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    Article  CAS  Google Scholar 

  7. Llewellyn, P. L. et al. High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008).

    Article  CAS  Google Scholar 

  8. Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  9. Britt, R. D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637–20640 (2009).

    Article  CAS  Google Scholar 

  10. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalised nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  11. Demessence, A., D’Alessandro, D. M., Foo, M. L. & Long, J. R. Strong CO2 binding in a water-stable, triazolate-bridged metal–organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009).

    Article  CAS  Google Scholar 

  12. Dietzel, P. D. C., Besikiotis, V. & Blom, R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009).

    Article  CAS  Google Scholar 

  13. Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. Microporous manganese formate: A simple metal–organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 126, 32–33 (2004).

    Article  CAS  Google Scholar 

  14. Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem. 2, 633–637 (2010).

    Article  CAS  Google Scholar 

  15. Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed. 45, 7751–7754 (2006).

    Article  CAS  Google Scholar 

  16. Walton, K. S. et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal–organic frameworks. J. Am. Chem. Soc. 130, 406–407 (2008).

    Article  CAS  Google Scholar 

  17. Thallapally, P. K. et al. Gas-induced transformation and expansion of a non-porous organic solid. Nature Mater. 7, 146–150 (2008).

    Article  CAS  Google Scholar 

  18. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  19. Thallapally, P. K. et al. Flexible (breathing) interpenetrated metal–organic frameworks for CO2 separation applications. J. Am. Chem. Soc. 130, 16842–16843 (2008).

    Article  CAS  Google Scholar 

  20. Wang, Z. & Cohen, S. M. Modulating metal–organic frameworks to breathe: A postsynthetic covalent modification approach. J. Am. Chem. Soc. 131, 16675–16677 (2009).

    Article  CAS  Google Scholar 

  21. Seo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 131, 12792–12800 (2009).

    Article  CAS  Google Scholar 

  22. Choi, H-S. & Suh, M. P. Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009).

    Article  CAS  Google Scholar 

  23. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  Google Scholar 

  24. Tanaka, D. et al. Preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. Nature Chem. 2, 410–416 (2010).

    Article  CAS  Google Scholar 

  25. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  26. Yaghi, O. M. Metal-organic frameworks: A tale of two entanglements. Nature Mater. 6, 92–93 (2007).

    Article  CAS  Google Scholar 

  27. Yang, S. et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework. Nature Chem. 1, 487–493 (2009).

    Article  CAS  Google Scholar 

  28. Chen, B., Eddaoudi, M., Hyde, S. T., O’Keefe, M. & Yaghi, O. M. Interwoven metal–organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001).

    Article  CAS  Google Scholar 

  29. Chen, B. et al. Rationally designed micropores within a metal–organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233–1236 (2007).

    Article  CAS  Google Scholar 

  30. Chen, B., Ma, S., Hurtado, E. J., Lobkovsky, E. B. & Zhou, H. C. A triply interpenetrated microporous metal–organic framework for selective sorption of gas molecules. Inorg. Chem. 14, 8490–8492 (2007).

    Article  Google Scholar 

  31. Zhang, J., Wojtas, L., Larsen, R. W., Eddaoudi, M. & Zaworotko, M. J. Temperature and concentration control over interpenetration in a metal–organic material. J. Am. Chem. Soc. 131, 17040–17041 (2009).

    Article  CAS  Google Scholar 

  32. Shekhah, O. et al. Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Mater. 8, 481–484 (2009).

    Article  CAS  Google Scholar 

  33. Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in metal–organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 132, 950–952 (2010).

    Article  CAS  Google Scholar 

  34. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  35. Zheng, S. et al. Porous indium-organic frameworks and systematization of structural building blocks. Angew. Chem. Int. Ed. 123, 9020–9024 (2011).

    Article  Google Scholar 

  36. Takamizawa, S. & Nakata, E. I. Direct observation of H2 adsorbed state within a porous crystal by single crystal X-ray diffraction analysis. Cryst. Eng. Commun. 7, 476–479 (2005).

    Article  CAS  Google Scholar 

  37. Takamizawa, S., Nakata, E. I., Yokoyama, H., Mochizuki, K. & Mori, W. Carbon dioxide inclusion phase of a transformable 1D coordination polymer host [Rh2(O2CPh)4(pyz)]n . Angew. Chem. Int. Ed. 42, 4331–4334 (2003).

    Article  CAS  Google Scholar 

  38. Mulfort, K. L., Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. An interpenetrated framework material with hysteretic CO2 uptake. Chem. Eur. J. 16, 276–281 (2010).

    Article  CAS  Google Scholar 

  39. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  40. Yuan, D., Getman, R. B., Wei, Z., Snurr, R. Q. & Zhou, H-C. Stepwise adsorption in a mesoporous metal–organic framework: Experimental and computational analysis. Chem. Commun. 22, 10228–10234 (2012).

    Google Scholar 

  41. An, J., Geib, S. J. & Rosi, N. L. High and selective CO2 uptake in a cobalt adeninate metal–organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38–39 (2010).

    Article  CAS  Google Scholar 

  42. Banerjee, R. et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875–3877 (2009).

    Article  CAS  Google Scholar 

  43. Reid, C. R. & Thomas, K. M. Adsorption of gases on a carbon molecular sieve used for air separation: Linear adsorptives as probes for kinetic selectivity. Langmuir 15, 3206–3218 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.Y. thanks EPSRC for a PhD Plus Fellowship and the Leverhulme Trust for an Early Career Fellowship. We thank EPSRC (UKSHEC) and the University of Nottingham for support and financial support of X-ray equipment, STFC for awarding access to Station 9.8 of the Daresbury Synchrotron Radiation Source, Diamond Light Source for beam time on Beamlines I11 and I19, and J. Potter for technical help at Diamond Beamline I11. We thank J. Sun (University of Stockholm) for helpful discussions on powder diffraction and A. Linden (University of Zürich) for discussions on the structural analysis of NOTT-202. N.R.C. gratefully acknowledges receipt of a Royal Society Leverhulme Trust Senior Research Fellowship. E.B. gratefully acknowledges financial support from an EPSRC Career Acceleration Fellowship (EP/G005060). M. Schröder gratefully acknowledges receipt of a Royal Society Wolfson Merit Award and an ERC Advanced Grant.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., X.L., K.M.T., M. Schröder: syntheses, characterization, measurements and analysis of adsorption isotherms. E.B. and M. Suyetin: grand canonical Monte Carlo modelling. S.Y., A.J.B., C.C.T. and J.E.P.: synchrotron X-ray powder data analysis. S.Y., A.J.B., W.L., D.R.A. and P.J.R.: single-crystal X-ray structural data analyses. S.Y., A.J.B., P.H., N.R.C., K.M.T. and M. Schröder: overall design, direction and supervision of project. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4358 kb)

Supplementary information

Crystallographic information for NOTT-202 at 120K (CIF 17 kb)

Supplementary information

Crystallographic information for NOTT-202a at 120K (CIF 24 kb)

Supplementary information

Crystallographic information for NOTT-202a at 150K (CIF 24 kb)

Supplementary information

Crystallographic information for NOTT-202a at 180K (CIF 23 kb)

Supplementary information

Crystallographic information for NOTT-202a at 200K (CIF 24 kb)

Supplementary information

Crystallographic information for NOTT-202a at 220K (CIF 23 kb)

Supplementary information

Crystallographic information for NOTT-202a at 260K (CIF 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, S., Lin, X., Lewis, W. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nature Mater 11, 710–716 (2012). https://doi.org/10.1038/nmat3343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing