Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In silico screening of carbon-capture materials

Abstract

One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60–80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30–40% compared with near-term technologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hybrid pressure and temperature swing adsorption.
Figure 2: (Mixture) adsorption isotherms.
Figure 3: Parasitic energy as a function of the Henry coefficient of CO2 for all silica zeolite structures.
Figure 4: Adsorption isotherms.
Figure 5: Optimal materials.
Figure 6: Parasitic energy for zeolites with cations.
Figure 7: Parasitic energy for ZIFs.

References

  1. Chu, S. Carbon capture and sequestration. Science 325, 1599 (2009).

    CAS  Article  Google Scholar 

  2. Pacala, S. & Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  3. Metz, B., Davidson, O., deConinck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage. (Intergovernmental Panel on Climate Change (IPCC), 2005); http://www.ipcc.ch.

  4. Massood, R., Timothy, J. S., Nsakala ya, N. & Liljedahl, G. N. Carbon Dioxide Capture from Existing Coal-Fired Power Plants (National Energy Technology Laboratory, US Department of Energy, 2007).

  5. Bhown, A. S. & Freeman, B. C. Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45, 8624–8632 (2011).

    CAS  Article  Google Scholar 

  6. Bottoms, R. Separating acid gases. US Patent 1,783,901 (1930).

  7. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    CAS  Article  Google Scholar 

  8. Ciferno, J. P., Marano, J. J. & Munson, R. K. Technology integration challenges. Chem. Eng. Prog. 107, 34–44 (2011).

    CAS  Google Scholar 

  9. Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    CAS  Article  Google Scholar 

  10. Yaghi, O. M. et al. Recticular synthesis and the design of new materials. Nature 423, 708–714 (2003).

    Article  Google Scholar 

  11. D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    Article  Google Scholar 

  12. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Article  Google Scholar 

  13. Deem, M. W., Pophale, R. & Cheeseman, P. A. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13, 12407–12412 (2011).

    Article  Google Scholar 

  14. Krishna, R. & van Baten, J. M. In silico screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys. 13, 10593–10616 (2011).

    CAS  Article  Google Scholar 

  15. Krishna, R. & Long, J. R. Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. J. Phys. Chem. C 115, 12941–12950 (2011).

    CAS  Article  Google Scholar 

  16. Yazaydin, A. O. et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198 (2009).

    CAS  Article  Google Scholar 

  17. Freeman, S. A., Dugas, R., Van Wagener, D., Nguyen, T. & Rochelle, G. T. Carbon dioxide capture with concentrated, aqueous piperazine. Energy Procedia 1, 1489–1496 (2009).

    CAS  Article  Google Scholar 

  18. Lemmon, E. W., Huber, M. L. & McLinden, M. O. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.0. (NIST, 2010); http://www.nist.gov/srd/nist23.cfm.

  19. Frenkel, D. & Smit, B. Understanding Molecular Simulations: From Algorithms to Applications 2nd edn (Academic, 2002).

    Google Scholar 

  20. Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008).

    CAS  Article  Google Scholar 

  21. Krishna, R., Calero, S. & Smit, B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite. Chem. Eng. J. 88, 81–94 (2002).

    CAS  Article  Google Scholar 

  22. Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed gas adsorption. Am. Inst. Chem. Eng. J. 11, 121–130 (1965).

    CAS  Article  Google Scholar 

  23. Rao, M. B. & Sircar, S. Thermodynamic consistency for binary gas adsorption equilibria. Langmuir 15, 7258–7267 (1999).

    CAS  Article  Google Scholar 

  24. Martin, R. L., Smit, B. & Haranczyk, M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Modell. 52, 308–318 (2012).

    CAS  Article  Google Scholar 

  25. Deem, M. W., Pophale, R., Cheeseman, P. A. & Earl, D. J. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113, 21353–21360 (2009).

    CAS  Article  Google Scholar 

  26. Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).

    CAS  Article  Google Scholar 

  27. Jariwala, K. & Haranczyk, M. http://www.carboncapturematerials.org (2011).

  28. International Zeolite Association (IZA); http://www.iza-structure.org/databases (2011).

  29. Sanders, M. J., Leslie, M. & Catlow, C. R. A. Interatomic potentials for SiO2 . J. Chem. Soc. Chem. Commun. 1271–1273 (1984).

  30. Beest, B. W. H. v., Kramer, G. J. & Santen, R. A. v. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

    Article  Google Scholar 

  31. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012).

    CAS  Article  Google Scholar 

  32. Garcia-Perez, E., Dubbeldam, D., Liu, B., Smit, B. & Calero, S. A computational method to characterize framework aluminum in aluminosilicates. Angew. Chem. Int. Ed. 46, 276–278 (2007).

    CAS  Article  Google Scholar 

  33. Löwenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Miner. 39, 92–96 (1954).

    Google Scholar 

  34. Calero, S. et al. Understanding the role of sodium during adsorption. A force field for alkanes in sodium exchanged faujasites. J. Am. Chem. Soc. 126, 11377–11386 (2004).

    CAS  Article  Google Scholar 

  35. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  36. Garcia-Perez, E. et al. A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption-J. Int. Adsorption Soc. 13, 469–476 (2007).

    CAS  Article  Google Scholar 

  37. Garcia-Sanchez, A. et al. Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113, 8814–8820 (2009).

    CAS  Article  Google Scholar 

  38. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING—a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Article  Google Scholar 

  39. Siepmann, J. I. & Potoff, J. J. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. Aiche J. 47, 1676–1682 (2001).

    Article  Google Scholar 

  40. Zhong, C. L. & Xu, Q. A general approach for estimating framework charges in metal-organic frameworks. J. Phys. Chem. C 114, 5035–5042 (2010).

    Google Scholar 

  41. Kim, J., Rodgers, J. M., Athenes, M. & Smit, B. Molecular Monte Carlo simulations using graphics processing units: To waste recycle or not? J. Chem. Theor. Comput. 7, 3208–3222 (2011).

    CAS  Article  Google Scholar 

  42. Bates, S. P., Well, W. J. M. v., Santen, R. A. v. & Smit, B. Energetics of n-alkanes in zeolites: A configurational-bias Monte Carlo investigation into pore size dependence. J. Am. Chem. Soc. 118, 6753–6759 (1996).

    CAS  Article  Google Scholar 

  43. Haranczyk, M. & Sethian, J. A. Navigating molecular worms inside chemical labyrinths. Proc. Natl Acad. Sci. USA 106, 21472–21477 (2009).

    CAS  Article  Google Scholar 

  44. Haranczyk, M. & Sethian, J. A. Automatic structure analysis in high-throughput characterization of porous materials. J. Chem. Theor. Comput. 6, 3472–3480 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the US Department of Energy under contracts DE-AC02-05CH11231, #CSNEW918, DE-SC0001015, DE-FG02-03ER15456, ARPA-e, and CCSI and the Office of Innovation at the Electric Power Research Institute (a detailed description can be found in the Supplementary Information).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the work presented in this paper.

Corresponding authors

Correspondence to Li-Chiang Lin, Richard L. Martin, Jihan Kim or Berend Smit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1640 kb)

Supplementary Information

Supplementary Information (AVI 113079 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, LC., Berger, A., Martin, R. et al. In silico screening of carbon-capture materials. Nature Mater 11, 633–641 (2012). https://doi.org/10.1038/nmat3336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3336

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing