Abstract
Graphene1 is a sturdy and chemically inert material exhibiting an exposed two-dimensional electron gas of high mobility. These combined properties enable the design of graphene composites, based either on covalent2 or non-covalent3 coupling of adsorbates, or on stacked and multilayered heterostructures4. These systems have shown tunable electronic properties such as bandgap engineering3, reversible metal–insulating transition2,4 or supramolecular spintronics5. Tunable superconductivity is expected as well6, but experimental realization is lacking. Here, we show experiments based on metal–graphene hybrid composites, enabling the tunable proximity coupling of an array of superconducting nanoparticles of tin onto a macroscopic graphene sheet. This material allows full electrical control of the superconductivity down to a strongly insulating state at low temperature. The observed gate control of superconductivity results from the combination of a proximity-induced superconductivity generated by the metallic nanoparticle array with the two-dimensional and tunable metallicity of graphene. The resulting hybrid material behaves, as a whole, like a granular superconductor showing universal transition threshold and localization of Cooper pairs in the insulating phase. This experiment sheds light on the emergence of superconductivity in inhomogeneous superconductors, and more generally, it demonstrates the potential of graphene as a versatile building block for the realization of superconducting materials.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).
Kozlov, S. M., Vines, F. & Görling, A. Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011).
Ponomarenko, A. L. et al. Tunable metal-insulator transition in double-layer graphene heterostructure. Nature Phys. 7, 958–961 (2011).
Candini, A. et al. Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011).
Uchoa, B. & Castro Neto, A-H. Superconducting states of pure and doped graphene. Phys. Rev. Lett. 98, 146801 (2007).
Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).
Feigel’man, M. V., Skvortsov, M. A. & Tikhonov, K. S. Proximity-induced superconductivity in graphene. JETP Lett. 88, 747–751 (2008).
Kessler, B. M., Girit, C. Ö., Zettl, A. & Bouchiat, V. Tunable superconducting phase transition in metal-decorated graphene sheets. Phys. Rev. Lett. 104, 047001 (2010).
Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–43 (November 1998).
Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).
Bollinger, A. T. et al. Superconductor–insulator transition in La2xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).
Parendo, K. A. et al. Electrostatic tuning of the superconductor–insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005).
Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011).
Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Frydman, A., Naaman, O. & Dynes, R. C. Universal transport in two-dimensional granular superconductors. Phys. Rev. B 66, 052509 (2002).
Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).
Van der Zant, H. S. J., Elion, W. J., Geerlings, L. J. & Mooij, J. E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Phys. Rev. B 54, 10081–10093 (1996).
Chakravarty, S., Kivelson, S., Zimanyi, G. T. & Halperin, B. I. Effect of quasiparticle tunneling on quantum-phase fluctuations and the onset of superconductivity in granular films. Phys. Rev. B 35, 7256–7259 (1987).
Rimberg, A. J. et al. Dissipation-driven superconductor–insulator transition in a two-dimensional Josephson-junction array. Phys. Rev. Lett. 78, 2632–2635 (1997).
Lutchyn, R. M., Galitski, V., Refael, G. & Das Sarma, S. Dissipation-driven quantum phase transition in superconductor-graphene systems. Phys. Rev. Lett. 101, 106402 (2008).
Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).
Fisher, M. P. A., Grinstein, G. & Girvin, S. M. Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor–insulator transition. Phys. Rev. Lett. 64, 587–590 (1990).
Steiner, M. A., Boebinger, G. & Kapitulnik, A. Possible field-tuned superconductor–insulator transition in high-Tc superconductors: Implications for pairing at high magnetic fields. Phys. Rev. Lett. 94, 107008 (2005).
Galitski, V. M. & Larkin, A. I. Superconducting fluctuations at low temperature. Phys. Rev. B 63, 174506 (2001).
Wang, X-L., Feygenson, M., Aronson, M. C. & Han, W-Q. Sn/SnOx core-shell nanospheres: Synthesis, anode performance in Li–Ion batteries, and superconductivity. J. Phys. Chem. C 114, 14697–14703 (2010).
Nguyen, H. Q. et al. Observation of giant positive magnetoresistance in a Cooper pair insulator. Phys. Rev. Lett. 103, 157001 (2009).
Baturina, T. I. et al. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor–insulator transition in TiN thin films. Phys. Rev. Lett. 99, 257003 (2007).
Beloborodov, I. S., Fominov, Ya. V., Lopatin, A. V. & Vinokur, V. M. Insulating state of granular superconductors in a strong-coupling regime. Phys. Rev. B 74, 014502 (2006).
Sacépé, B. et al. Disorder-induced inhomogeneities of the superconducting state close to the superconductor–insulator transition. Phys. Rev. Lett. 101, 157006 (2008).
Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nature Phys. 7, 239–244 (2011).
Wagenblast, K-H., van Otterlo, A., Schön, G. & Zimanyi, G. T. New universality class at the superconductor–insulator transition. Phys. Rev. Lett. 78, 1779–1782 (1997).
Markovic, N., Christiansen, C., Mack, A. M., Huber, W. H. & Goldman, A. M. Superconductor–insulator transition in two dimensions. Phys. Rev. B 60, 4320–4328 (1999).
Iyer, S., Pekker, D. & Refael, G. A Mott glass to superfluid transition for random bosons in two dimensions. Phys. Rev. B 85, 094202 (2012).
Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).
Acknowledgements
This work is partially supported by ANR-BLANC SuperGraph, ERC Advanced Grant MolNanoSpin No. 226558 and the Cible programme from Région Rhone-Alpes. Samples were fabricated at the NANOFAB facility of the Néel Institute, the support team of which is gratefully acknowledged. We thank H. Arjmandi-Tash, N. Bendiab, H. Bouchiat, C. Chapelier, J. Coraux, M. V. Feigel’man, Ç.Ö. Girit, B. M. Kessler, L. Marty, A. Reserbat-Plantey, B. Sacépé, V. Sessi, W. Wernsdorfer and A. Zettl for help and stimulating discussions.
Author information
Authors and Affiliations
Contributions
V.B. and A.A. conceived the experiments, Z.H. grew the graphene, A.A. and Z.H. fabricated the samples and carried out the measurements, A.A. and V.B. analysed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 515 kb)
Rights and permissions
About this article
Cite this article
Allain, A., Han, Z. & Bouchiat, V. Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids. Nature Mater 11, 590–594 (2012). https://doi.org/10.1038/nmat3335
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3335
This article is cited by
-
Size dependent nature of the magnetic-field driven superconductor-to-insulator quantum-phase transitions
Communications Physics (2021)
-
Quantum breakdown of superconductivity in low-dimensional materials
Nature Physics (2020)
-
High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ
Nature (2019)
-
Current Review on Synthesis, Composites and Multifunctional Properties of Graphene
Topics in Current Chemistry (2019)
-
Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array
Nature Physics (2018)