Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications


A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers1,2,3,4,5,6,7,8,9,10,11. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range −125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Formation of the 3D nanostructured polymer.
Figure 2: Optical characterization.
Figure 3: Thermal stability of the templated BP.
Figure 4: Band-edge lasing from a templated BP.


  1. De Gennes, P. G. Possibilites offertes par la reticulation de polymeres en presence d’un cristal liquide. Phys. Lett. A 28, 725–726 (1969).

    Article  CAS  Google Scholar 

  2. Tsutsui, T. & Tanaka, R. Network polymers with cholesteric liquid-crystalline order prepared from poly(gamma-butyl L-glutamate)-butyl acrylate liquid-crystalline system. Polymer 22, 117–123 (1981).

    Article  CAS  Google Scholar 

  3. Hasson, C. D., Davis, F. J. & Mitchell, G. R. Imprinting chiral structures on liquid crystalline elastomers. Chem. Commun. 22, 2515–2516 (1998).

    Article  Google Scholar 

  4. Mao, Y. & Warner, M. Imprinted networks as chiral pumps. Phys. Rev. Lett. 86, 5309–5312 (2001).

    Article  CAS  Google Scholar 

  5. Jakli, A., Nair, G. G., Lee, C. K., Sun, R. & Chien, L. C. Macroscopic chirality of a liquid crystal from nonchiral molecules. Phys. Rev. E 63, 061710 (2001).

    Article  CAS  Google Scholar 

  6. Courty, S., Tajbakhsh, A. R. & Terentjev, E. M. Stereo-selective swelling of imprinted cholesteric networks. Phys. Rev. Lett. 91, 085503 (2003).

    Article  CAS  Google Scholar 

  7. Mitov, M. & Dessaud, N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Mater. 5, 361–364 (2006).

    Article  CAS  Google Scholar 

  8. Guo, J. et al. Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Appl. Phys. Lett. 93, 201901 (2008).

    Article  Google Scholar 

  9. McConney, M. E. et al. Thermally induced, multicolored hyper-reflective cholesteric liquid crystals. Adv. Mater. 23, 1453–1457 (2011).

    Article  CAS  Google Scholar 

  10. McConney, M. E., Tondiglia, V. P., Hurtubise, J. M., White, T. J. & Bunning, T. J. Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization. Chem. Commun. 47, 505–507 (2011).

    Article  CAS  Google Scholar 

  11. McConney, M. E. et al. Dynamic high contrast reflective coloration from responsive polymer/cholesteric liquid crystal architectures. Soft Matter 8, 318–323 (2012).

    Article  CAS  Google Scholar 

  12. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  13. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  14. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  15. Wright, D. C. & Mermin, N. D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 61, 385–432 (1989).

    Article  CAS  Google Scholar 

  16. Cao, W., Munoz, A., Palffy-Muhoray, P. & Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Mater. 1, 111–113 (2002).

    Article  CAS  Google Scholar 

  17. Yokoyama, S., Mashiko, S., Kikuchi, H., Uchida, K. & Nagamura, T. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 18, 48–51 (2006).

    Article  CAS  Google Scholar 

  18. Coles, H. & Morris, S. Liquid-crystal lasers. Nature Photon. 4, 676–685 (2010).

    Article  CAS  Google Scholar 

  19. Hisakado, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005).

    Article  CAS  Google Scholar 

  20. Ravnik, M., Alexander, G. P., Yeomans, J. M. & Zumer, S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc. Natl Acad. Sci. USA 108, 5188–5192 (2011).

    Article  CAS  Google Scholar 

  21. Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).

    Article  CAS  Google Scholar 

  22. Broer, D. J., Finkelmann, H. & Kondo, K. In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol. Chem. 189, 185–194 (1988).

    Article  CAS  Google Scholar 

  23. Kitzerow, H-S. et al. Observation of blue phases in chiral networks. Liq. Cryst. 14, 911–916 (1993).

    Article  CAS  Google Scholar 

  24. Broer, D. J. & Lub, J. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    Article  CAS  Google Scholar 

  25. Dierking, I. Polymer network-stabilized liquid crystals. Adv. Mater. 12, 167–181 (2000).

    Article  CAS  Google Scholar 

  26. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002).

    Article  CAS  Google Scholar 

  27. Choi, S. S., Morris, S. M., Huck, W. T. S. & Coles, H. J. Simultaneous red–green–blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template. Adv. Mater. 22, 53–56 (2010).

    Article  CAS  Google Scholar 

  28. Coles, H. J. & Pivnenko, M. N. Liquid crystal ‘blue phases’ with a wide temperature range. Nature 436, 997–1000 (2005).

    Article  CAS  Google Scholar 

  29. Miller, R. J. & Gleeson, H. F. Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases. J. Phys. II 6, 909–922 (1996).

    CAS  Google Scholar 

  30. Hikmet, R. A. M. in Liquid Crystals in Complex Geometries (eds Crawford, G. P. & Zumer, S.) Ch. 3, 53–82 (Taylor & Francis, 1996).

    Google Scholar 

Download references


This work was carried out under the COSMOS project, which is funded by the Engineering and Physical Sciences Research Council UK (grants EP/D04894X/1 and EP/H046658/1). We thank H. Hasebe (Dainippon Ink & Chemicals, Japan) for supplying the reactive mesogen UCL-11-K1. S.S.C. acknowledges LG Display for a studentship. S.M.M. acknowledges The Royal Society for financial support.

Author information

Authors and Affiliations



F.C. conceived the idea. F.C., F.V.D. and S.S.C. developed the fabrication process. F.C. and F.V.D. carried out the microscopy and spectroscopy experiments. F.C. and S.M.M. carried out the Kossel diffraction experiment. S.M.M. and F.C. carried out the lasing experiment. F.C., D-H.K. and D.J.G. characterized the templated structures. M.M.Q. and S.N. synthesized the bimesogenic materials. F.C., P.J.W.H. and F.V.D. fabricated the glass cells. F.C. and F.V.D. wrote the paper in collaboration with all the authors. R.H.F. was a collaborator on the COSMOS project. H.J.C. informed and directed the research.

Corresponding author

Correspondence to H. J. Coles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 420 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castles, F., Day, F., Morris, S. et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nature Mater 11, 599–603 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing