Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature metastability of multilayer graphene oxide films


Graphene oxide potentially has multiple applications. The chemistry of graphene oxide and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This understanding is crucial to enable future applications of this material. Here, a combined experimental and density functional theory study shows that multilayer graphene oxide produced by oxidizing epitaxial graphene through the Hummers method is a metastable material whose structure and chemistry evolve at room temperature with a characteristic relaxation time of about one month. At the quasi-equilibrium, graphene oxide reaches a nearly stable reduced O/C ratio, and exhibits a structure deprived of epoxide groups and enriched in hydroxyl groups. Our calculations show that the structural and chemical changes are driven by the availability of hydrogen in the oxidized graphitic sheets, which favours the reduction of epoxide groups and the formation of water molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Room-temperature experimental XPS spectra of aged GO films.
Figure 2: Atomistic structures of multilayered GO generated from DFT.
Figure 3: DFT and experimental XPS spectra.
Figure 4: DFT energy diagram for GO reduction.


  1. 1

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S. & Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotech. 6, 496–500 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Ruoff, R. S. Graphene: Calling all chemists. Nature Nanotech. 3, 10–11 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Wu, X. et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008).

    Article  Google Scholar 

  9. 9

    Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Yan, J-A., Xian, L. & Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 103, 086802 (2009).

    Article  Google Scholar 

  11. 11

    Yan, J-A. & Chou, M. Y. Oxidation functional groups on graphene: Structural and electronic properties. Phys. Rev. B 82, 125403 (2010).

    Article  Google Scholar 

  12. 12

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Robinson, J. T. et al. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 8, 3441–3445 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. Q. & Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137–3140 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Potts, J. R., Dreyer, D. R., Bielawski, C. W. & Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Putz, K. W., Compton, O. C., Palmeri, M. J., Nguyen, S. T. & Brinson, L. C. High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20, 3322–3329 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Dreyer, D. R., Jarvis, K. A., Ferreira, P. J. & Bielawski, C. W. Graphite oxide as a dehydrative polymerization catalyst: A one-step synthesis of carbon-reinforced poly(phenylene methylene) composites. Macromolecules 44, 7659–7667 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Dreyer, D. R., Jia, H. & Bielawski, C. W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).

    CAS  Google Scholar 

  20. 20

    Jia, H., Dreyer, D. R. & Bielawski, C. W. Graphite oxide as an auto-tandem oxidation–hydration–aldol coupling catalyst. Adv. Synth. Catal. 353, 528–532 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Wang, D. et al. Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587–1595 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Kim, T. Y. et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5, 436–442 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Dreyer, D. R., Ruoff, R. S. & Bielawski, C. W. From conception to realization: An historial account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 49, 9336–9344 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Acik, M. et al. The role of intercalated water in multilayered graphene oxide. ACS Nano 4, 5861–5868 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Rourke, J. P. et al. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Ekiz, O. Ö., Urel, M., Güner, H., Mizrak, A. K. & Dâna, A. Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem. 2, 581–587 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Wang, L. et al. Stability of graphene oxide phases from first-principles calculations. Phys. Rev. B 82, 161406 (2010).

    Article  Google Scholar 

  32. 32

    Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    CAS  Article  Google Scholar 

  33. 33

    Berger, C. et al. Ultrathin expitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Yang, D. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145–152 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Larciprete, R., Fabris, S., Sun, T. P., Lacovig, A. B. & Lizzit, S. Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Jung, I. et al. Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J. Phys. Chem. C 113, 18480–18486 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  38. 38

    Pehlke, E. & Scheffler, M. Evidence for site-sensitive screening of core holes at the Si and Ge(001) surface. Phys. Rev. Lett. 71, 2338–2341 (1993).

    CAS  Article  Google Scholar 

  39. 39

    Haerle, R., Riedo, E., Pasquarello, A. & Baldereschi, A. s p2/s p3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 65, 045101 (2001).

    Article  Google Scholar 

  40. 40

    Galande, C. et al. Quasi-molecular fluorescence from graphene oxide. Sci. Rep. 1, 85 (2011).

    Article  Google Scholar 

  41. 41

    Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    CAS  Article  Google Scholar 

  42. 42

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Fuchs, M. & Scheffler, M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Hasegawa, M., Nishidate, K. & Iyetomi, H. Energetics of interlayer binding in graphite: the semiempirical approach revisited. Phys. Rev. B 76, 115424 (2007).

    Article  Google Scholar 

  45. 45

    Bongiorno, A. & Pasquarello, A. Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys. Rev. Lett. 88, 125901 (2002).

    Article  Google Scholar 

  46. 46

    Bongiorno, A., Pasquarello, A., Hybertsen, M. S. & Feldman, L. C. Transition structure at the Si(100)-SiO2 interface. Phys. Rev. Lett. 90, 186101 (2003).

    Article  Google Scholar 

Download references


S.K., S.Z., A.B. and E.R. acknowledge the support of the National Science Foundation (NSF) (CMMI-1100290 and DMR-0820382). Y.H., C.B. and W.d.H. acknowledge the support of NSF grant DMR-0820382. A.B. acknowledges the support of the Samsung Advanced Institute of Technology (SAIT). E.R. acknowledges the support of the NSF grant DMR-0706031 and the Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-06ER46293). Y.J.C. and M.A. acknowledge the support of the Office of Basic Sciences of the US Department of Energy (DE-SC001951). We thank D. Wang, P. Sheehan and A. R. Laracuente of the US Naval Research Laboratory for the 4-point electrical transport measurements.

Author information




S.K. performed XPS, AFM and optical experiments. S.Z. carried out DFT calculations. Y.H., C.B. and W.d.H. synthesized the GO samples. M.A. and Y.J.C. performed infrared measurements. A.B. conceived and designed the theory and analysed the data. E.R. conceived and designed the experiment and analysed the data. All authors contributed to writing the article.

Corresponding authors

Correspondence to Angelo Bongiorno or Elisa Riedo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1763 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S., Zhou, S., Hu, Y. et al. Room-temperature metastability of multilayer graphene oxide films. Nature Mater 11, 544–549 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing