Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exchange biasing of magnetoelectric composites

Abstract

Magnetoelectric composite materials are promising candidates for highly sensitive magnetic-field sensors. However, the composites showing the highest reported magnetoelectric coefficients require the presence of external d.c. magnetic bias fields, which is detrimental to their use as sensitive high-resolution magnetic-field sensors. Here, we report magnetoelectric composite materials that instead rely on intrinsic magnetic fields arising from exchange bias in the device. Thin-film magnetoelectric two–two composites were fabricated by magnetron sputtering on silicon-cantilever substrates. The composites consist of piezoelectric AlN and multilayers with the sequence Ta/Cu/Mn70Ir30/Fe50Co50 or Ta/Cu/Mn70Ir30/Fe70.2Co7.8Si12B10 serving as the magnetostrictive component. The thickness of the ferromagnetic layers and angle dependency of the exchange bias field are used to adjust the shift of the magnetostriction curve in such a way that the maximum piezomagnetic coefficient occurs at zero magnetic bias field. These self-biased composites show high sensitivity to a.c. magnetic fields with a maximum magnetoelectric coefficient of 96 V cm−1 Oe−1 at mechanical resonance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exchange biasing of ferromagnetic single-layer and multilayer systems.
Figure 2: TEM of an exchange-biased magnetostrictive multilayer system.
Figure 3: Total anisotropy field versus magnetostrictive layer thickness tFM for the same samples as in Fig. 1b.
Figure 4: The antagonism between exchange bias and magnetostriction.
Figure 5: Solution to the antagonism by introducing the inclination angle .
Figure 6: Magnetoelectric voltage coefficients αME of exchange-biased magnetoelectric composite sensors as a function of an externally applied magnetic field H.
Figure 7: Performance of the Fe70.2Co7.8Si12B10-based magnetoelectric sensor operated with a charge amplifier.
Figure 8: Comparison of magnetoelectric sensors with and without exchange bias.

Similar content being viewed by others

References

  1. Ma, J., Hu, J., Li, Z. & Nan, C-W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062–1087 (2011).

    Article  CAS  Google Scholar 

  2. Dong, S., Cheng, J., Li, J. F. & Viehland, D. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812–4814 (2003).

    Article  CAS  Google Scholar 

  3. Laletin, V. M. et al. Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl. Phys. Lett. 87, 222507 (2005).

    Article  Google Scholar 

  4. Srinivasan, G. et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

    Article  Google Scholar 

  5. Greve, H., Woltermann, E., Quenzer, H-J., Wagner, B. & Quandt, E. Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).

    Article  Google Scholar 

  6. Tadahiko, K. & Isao, S. Self bias magnetostrictive material. Japanese patent 09083037 A (1997).

  7. Mandal, S. K., Sreenivasulu, G., Petrov, V. M. & Srinivasan, G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010).

    Article  Google Scholar 

  8. Onuta, T-D. et al. Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).

    Article  Google Scholar 

  9. Vopsaroiu, M., Blackburn, J. & Cain, M. G. A new magnetic recording read head technology based on the magneto-electric effect. J. Phys. D 40, 5027–5033 (2007).

    Article  CAS  Google Scholar 

  10. Meiklejohn, W. & Bean, C. New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957).

    Article  CAS  Google Scholar 

  11. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–230 (1999).

    Article  Google Scholar 

  12. Van Driel, J., de Boer, F. R., Lenssen, K-M. H. & Coehoorn, R. Exchange biasing by Ir19Mn81: Dependence on temperature, microstructure and antiferromagnetic layer thickness. J. Appl. Phys. 88, 975–982 (2000).

    Article  CAS  Google Scholar 

  13. Li, H. et al. Exchange enhancement and thermal anneal in Mn76Ir24 bottom-pinned spin valves. J. Appl. Phys. 89, 6904–6906 (2001).

    Article  CAS  Google Scholar 

  14. Kantola, M. & Tokola, E. X-ray studies on the thermal expansion of copper–nickel alloys. Ann. Acad. Sci. Fennicae Ser. A6: Physica 223, 1–10 (1967).

    Google Scholar 

  15. Ellis, W. C. & Greiner, E. S. Equilibrium relations in the solid state of the iron–cobalt system. Trans. Am. Soc. Metals 29, 415–432 (1941).

    CAS  Google Scholar 

  16. Hu, J-g., Jin, G-J. & Ma, Y-Q. Thickness and angular dependencies of exchange bias in ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 92, 1009–1013 (2002).

    Article  CAS  Google Scholar 

  17. Camarero, J. et al. Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: Competing anisotropies. Phys. Rev. Lett. 95, 057204 (2005).

    Article  Google Scholar 

  18. Greve, H. et al. Low damping resonant magnetoelectric sensors. Appl. Phys. Lett. 97, 152503 (2010).

    Article  Google Scholar 

  19. Williamson, S. J. & Kauffmann, L. Biomagnetism. J. Magn. Magn. Mater. 22, 129–201 (1981).

    Article  Google Scholar 

  20. Dho, J. & Blamire, M. G. Competing functionality in multiferroic YMnO3 . Appl. Phys. Lett. 87, 252504 (2005).

    Article  Google Scholar 

  21. Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  Google Scholar 

  22. Béa, H. et al. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89, 242114 (2006).

    Article  Google Scholar 

  23. Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).

    Article  CAS  Google Scholar 

  24. Hauguel, T. et al. Experimental evidence for exchange bias in polycrystalline BiFeO3/Ni81Fe19 thin films. J Appl. Phys. 110, 073906 (2011).

    Article  Google Scholar 

  25. Klokholm, E. The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Magn. 12, 819–821 (1976).

    Article  Google Scholar 

  26. Du Tremolet de Lacheisserie, E. & Peuzin, J. Magnetostriction and internal stresses in thin films: The cantilever method revisited. J. Magn. Magn. Mater. 136, 189–196 (1994).

    Article  CAS  Google Scholar 

  27. Wetherhold, R. Magnetoelastic interaction in magnetostrictive spring-magnet multilayers. J. Magn. Magn. Mater. 269, 61–69 (2004).

    Article  CAS  Google Scholar 

  28. Ludwig, A. & Quandt, E. Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Trans. Magn. 38, 2829–2831 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. McCord for fruitful discussions and the German Science Foundation DFG for financial support through the Collaborative Research Centre SFB 855 ‘ME Composite Materials—Biomagnetic Interfaces of the Future’. Many thanks go to C. Zamponi for accurate TEM sample preparation by focused ion beam technology.

Author information

Authors and Affiliations

Authors

Contributions

E.L., D.M. and E.Q. designed the experiment. C.K. and E.L. were responsible for the preparation and characterization of the Fe70.2Co7.8Si12B10 and Fe50Co50 samples, respectively. V.H. performed TEM measurements and data analysis. L.K. supervised the TEM measurements and data analysis. R.J. did the noise measurements under the supervision of R.K. E.L. and D.M. developed the angle concept of effective exchange bias and the multilayer stack. D.M. and E.Q. supervised the research. All authors contributed to the manuscript and the interpretation of the data.

Corresponding author

Correspondence to Dirk Meyners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lage, E., Kirchhof, C., Hrkac, V. et al. Exchange biasing of magnetoelectric composites. Nature Mater 11, 523–529 (2012). https://doi.org/10.1038/nmat3306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing