Spintronics and pseudospintronics in graphene and topological insulators

Abstract

The two-dimensional electron systems in graphene and in topological insulators are described by massless Dirac equations. Although the two systems have similar Hamiltonians, they are polar opposites in terms of spin–orbit coupling strength. We briefly review the status of efforts to achieve long spin-relaxation times in graphene with its weak spin–orbit coupling, and to achieve large current-induced spin polarizations in topological-insulator surface states that have strong spin–orbit coupling. We also comment on differences between the magnetic responses and dilute-moment coupling properties of the two systems, and on the pseudospin analogue of giant magnetoresistance in bilayer graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of spintronics.
Figure 2: Dirac cones in graphene and in topological insulators.
Figure 3: Hanle effect measurements of room-temperature spin-relaxation times in a variety of bilayer graphene samples41.
Figure 4: Phase diagram for magnetic adatom magnetism mediated by topological-insulator surface states.
Figure 5: Comparison between a regular ferromagnetic metal spin-valve device and a bilayer graphene pseudospin-valve device.

References

  1. 1

    Zutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–345 (2004).

  2. 2

    Geim A. K. & MacDonald, A. H. Exploring carbon flatland. Phys. Today 60, 35–41 (August 2007).

  3. 3

    Castro Neto, A. H., Guinea, F., Torres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

  4. 4

    Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  5. 5

    Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  6. 6

    Jansen, R. Silicon spintronics. Nature Mater. 11, 400–408 (2012).

  7. 7

    MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

  8. 8

    Yazyev, O. V. Emergence of magnetism in grapheme materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).

  9. 9

    Abanin, D. A. & Pesin, D. A. Ordering of magnetic impurities and tunable electronic properties of topological insulators. Phys. Rev. Lett. 106, 136802 (2011).

  10. 10

    Zhu, J-J., Yao, D-X., Zhang, S-C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulator. Phys. Rev. Lett. 106, 097201 (2011).

  11. 11

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

  12. 12

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

  13. 13

    Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

  14. 14

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

  15. 15

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Magnetic switching by spin torque from the spin Hall effect. Preprint at http://arXiv.org/abs/1110.6846v2 (2011).

  16. 16

    Wang, G., Endicott, L. & Uher, C. Recent advances in the growth of Bi-Sb-Te-Se thin films. Sci. Adv. Mater. 3, 539–560 (2011).

  17. 17

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

  18. 18

    Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

  19. 19

    Min, H. et al. Intrinsic and Rashba spin–orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

  20. 20

    Ando, T. Spin–orbit interaction in carbon nanotubes. J. Phys. Soc. Jpn 69, 1757–1763 (2000).

  21. 21

    Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

  22. 22

    Yao, Y., Ye, F., Qi, X. L., Zhang, S. C. & Fang, Z. Spin–orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007).

  23. 23

    Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: spin–orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009).

  24. 24

    Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

  25. 25

    Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

  26. 26

    Yafet, Y. in Solid State Physics Vol. 14 (eds Seitz, F. & Turnbull, D.) 1 (Academic, 1963).

  27. 27

    Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

  28. 28

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

  29. 29

    Cho, S., Chen, Y. F. & Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007).

  30. 30

    Nishioka, M. & Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 90, 252505 (2007).

  31. 31

    Ohishi, M. et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, L605–L607 (2007).

  32. 32

    Wang, W. H. et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402 (2008).

  33. 33

    J'ozsa, C. et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403(R) (2009).

  34. 34

    Tombros, N. et al. Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 101, 046601 (2008).

  35. 35

    Castro-Neto, A. H. & Guinea, F. Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009).

  36. 36

    Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 103, 146801 (2009).

  37. 37

    Ertler, C., Konschuh, S., Gmitra, M. & Fabian, J. Electron spin relaxation in graphene: the role of the substrate. Phys. Rev. B 80, 041405(R) (2009).

  38. 38

    Ochoa, H., Castro-Neto, A. H. & Guinea, F. Elliot–Yafet mechanism in graphene. Preprint at http://arxiv.org/abs/1107.3386 (2011).

  39. 39

    Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

  40. 40

    Han, W. & Kawakami, R. K. Spin relaxation in single-layer and bilayer graphene. Phys. Rev. Lett. 107, 0472074 (2011).

  41. 41

    Yang, T-Y. et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett. 107, 047206 (2011).

  42. 42

    Dyakonov, M. I. & Perel, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1971).

  43. 43

    Jo, S., Ki, D-K., Jeong, D., Lee, H-J. & Kettemann, S. Spin relaxation properties in graphene due to its linear dispersion. Phys. Rev. B 84, 075453 (2011).

  44. 44

    Ma, D., Li, Z. & Yang, Z. Strong spin–orbit splitting in graphene with adsorbed Au atoms. Carbon 50, 297–305 (2012).

  45. 45

    Varykhalov, A. et al. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 101, 157601 (2008).

  46. 46

    Rader, O. et al. Is there a Rashba effect in graphene on 3D ferromagnets? Phys. Rev. Lett. 102, 057602 (2009).

  47. 47

    Qiao, Z. et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B 82, 161414(R) (2010).

  48. 48

    Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

  49. 49

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

  50. 50

    Teo, J. C. Y., Fu, L. & Kane, C. L Surface states and topological invariants in three-dimensional topological insulators: application to Bi1– xSbx . Phys. Rev. B 78, 045426 (2008).

  51. 51

    Culcer, D., Hwang, E. H., Stanescu, T. D. & Das Sarma, S. Two-dimensional surface charge transport in topological insulators. Phys. Rev. B 82, 155457 (2010).

  52. 52

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

  53. 53

    Dyakonov, M. I. & Khaetskii, A. V. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) Ch. 3 (Springer, 2008).

  54. 54

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

  55. 55

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

  56. 56

    Inoue, J. I., Bauer, G. E. W. & Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 70, 41303(R) (2004).

  57. 57

    Mishchenko, E. G., Shytov, A. V. & Halperin, B. I. Spin current and polarization in impure two-dimensional electron systems with spin–orbit coupling. Phys. Rev. Lett. 93, 226602 (2004).

  58. 58

    Khaetskii, A. Nonexistence of intrinsic spin currents. Phys. Rev. Lett. 96, 056602 (2006).

  59. 59

    Raimondi, R. & Schwab, P. Spin-Hall effect in a disordered two-dimensional electron system. Phys. Rev. B 71, 33311 (2005).

  60. 60

    Dimitrova, O. V. Spin-Hall conductivity in a two-dimensional Rashba electron gas. Phys. Rev. B 71, 245327 (2005).

  61. 61

    Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

  62. 62

    Silvestrov, P. G. & Mishchenko, E. G. Spin-Hall effect in chiral electron systems: from semiconductor heterostructures to topological insulators. Preprint at http://arxiv.org/abs/0912.4658 (2009).

  63. 63

    Gao, J-H., Yuan, J., Chen, W-Q., Zhou, Y. & Zhang, F-C. Giant mesoscopic spin Hall effect on the surface of topological insulator. Phys. Rev. Lett. 106, 057205 (2011).

  64. 64

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

  65. 65

    Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  66. 66

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

  67. 67

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

  68. 68

    Engel, H-A. Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane electric and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007).

  69. 69

    Zhuzin, A. A. & Burkov, A. A. Thin topological insulator film in a perpendicular magnetic field. Phys. Rev. B 83, 195413 (2011).

  70. 70

    Tse, W-K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

  71. 71

    Sinitsyn, N. A., MacDonald, A. H., Jungwirth, T., Dugaev, V. K. & Sinova, J. Anomalous Hall effect in 2D Dirac band: link between Kubo–Streda formula and semiclassical Boltzmann equation approach. Phys. Rev. B 75, 045315 (2007).

  72. 72

    Culcer, D. & Das Sarma, S. Anomalous Hall response of topological insulators. Phys. Rev. B 83, 245441 (2011).

  73. 73

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

  74. 74

    Qi, X-L., Li, R., Zang, J. & Zhang, S-C. Inducing a magnetic monopole with topological surface states. Science 27, 1184–1187 (2009).

  75. 75

    Qi, X-L., Hughes, T. L. & Zhang, S-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

  76. 76

    Tse, W-K. & MacDonald, A. H. Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields. Phys. Rev. B 82, 161104(R) (2010).

  77. 77

    Sushkov, A. B. et al. Far-infrared cyclotron resonance and Faraday effect in Bi2Se3 . Phys. Rev. B 82, 125110 (2010).

  78. 78

    Jenkins, G. S. et al. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3 . Phys. Rev. B 82, 125120 (2010).

  79. 79

    Valdes Aguilar, R. et al. THz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3 . Preprint at http://arxiv.org/abs/1105.0237v3 (2011).

  80. 80

    Hancock, J. N. et al. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Phys. Rev. Lett. 107, 136803 (2011).

  81. 81

    Maciejko, J., Qi, X-L., Drew, H. D. & Zhang, S-C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

  82. 82

    Tkachov, G. & Hankiewicz, E. M. Anomalous galvanomagnetism, cyclotron resonance, and microwave spectroscopy of topological insulators. Phys. Rev. B 84, 035405 (2011).

  83. 83

    Garate, I. & Franz, M. Inverse spin-galvanic effect in a topological-insulator/ferromagnet interface. Phys. Rev. Lett. 104, 146802 (2010).

  84. 84

    Wray, L. A. et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nature Phys. 7, 32–37 (2011).

  85. 85

    Vobornik, I. et al. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 11, 4079–4082 (2011).

  86. 86

    Liu, Q., Liu, C-X., Xu, C., Qi, X-L. & Zhang, S-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

  87. 87

    Garate, I. & Franz, M. Magnetoelectric response of the time-reversal invariant helical metal. Phys. Rev. B 81, 172408 (2010).

  88. 88

    Hong, X., Cheng, S-H., Herding, C. & Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 83, 085410 (2011).

  89. 89

    Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199–202 (2012).

  90. 90

    McCann, E. & Fal'ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

  91. 91

    Xia, F., Farmer, D. B., Lin, Y-m. & Avouris, P. Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

  92. 92

    Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 7, 948–952 (2011).

  93. 93

    Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer. Preprint at http://arxiv.org/abs/1108.1609 (2011).

  94. 94

    San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).

  95. 95

    Craciun, M. F., Russo, S., Yamamoto, M. & Tarucha, S. Tuneable electronic properties in grapheme. Nano Today 6, 42–60 (2011).

Download references

Acknowledgements

We acknowledge financial support from the US Army Research Office (ARO) under award number MURI W911NF-08-1-0364. We thank D. Abanin, I. Grigorieva, J. Sinova, A. Veligura and B. van Wees for discussions.

Author information

Correspondence to Allan H. MacDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pesin, D., MacDonald, A. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater 11, 409–416 (2012). https://doi.org/10.1038/nmat3305

Download citation

Further reading