Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Spintronics and pseudospintronics in graphene and topological insulators

Abstract

The two-dimensional electron systems in graphene and in topological insulators are described by massless Dirac equations. Although the two systems have similar Hamiltonians, they are polar opposites in terms of spin–orbit coupling strength. We briefly review the status of efforts to achieve long spin-relaxation times in graphene with its weak spin–orbit coupling, and to achieve large current-induced spin polarizations in topological-insulator surface states that have strong spin–orbit coupling. We also comment on differences between the magnetic responses and dilute-moment coupling properties of the two systems, and on the pseudospin analogue of giant magnetoresistance in bilayer graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of spintronics.
Figure 2: Dirac cones in graphene and in topological insulators.
Figure 3: Hanle effect measurements of room-temperature spin-relaxation times in a variety of bilayer graphene samples41.
Figure 4: Phase diagram for magnetic adatom magnetism mediated by topological-insulator surface states.
Figure 5: Comparison between a regular ferromagnetic metal spin-valve device and a bilayer graphene pseudospin-valve device.

Similar content being viewed by others

References

  1. Zutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–345 (2004).

    Google Scholar 

  2. Geim A. K. & MacDonald, A. H. Exploring carbon flatland. Phys. Today 60, 35–41 (August 2007).

    CAS  Google Scholar 

  3. Castro Neto, A. H., Guinea, F., Torres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  5. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  6. Jansen, R. Silicon spintronics. Nature Mater. 11, 400–408 (2012).

    CAS  Google Scholar 

  7. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    CAS  Google Scholar 

  8. Yazyev, O. V. Emergence of magnetism in grapheme materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).

    Google Scholar 

  9. Abanin, D. A. & Pesin, D. A. Ordering of magnetic impurities and tunable electronic properties of topological insulators. Phys. Rev. Lett. 106, 136802 (2011).

    CAS  Google Scholar 

  10. Zhu, J-J., Yao, D-X., Zhang, S-C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulator. Phys. Rev. Lett. 106, 097201 (2011).

    Google Scholar 

  11. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Google Scholar 

  12. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

    CAS  Google Scholar 

  13. Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    CAS  Google Scholar 

  14. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Google Scholar 

  15. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Magnetic switching by spin torque from the spin Hall effect. Preprint at http://arXiv.org/abs/1110.6846v2 (2011).

  16. Wang, G., Endicott, L. & Uher, C. Recent advances in the growth of Bi-Sb-Te-Se thin films. Sci. Adv. Mater. 3, 539–560 (2011).

    CAS  Google Scholar 

  17. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Google Scholar 

  18. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Google Scholar 

  19. Min, H. et al. Intrinsic and Rashba spin–orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    Google Scholar 

  20. Ando, T. Spin–orbit interaction in carbon nanotubes. J. Phys. Soc. Jpn 69, 1757–1763 (2000).

    CAS  Google Scholar 

  21. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    CAS  Google Scholar 

  22. Yao, Y., Ye, F., Qi, X. L., Zhang, S. C. & Fang, Z. Spin–orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007).

    Google Scholar 

  23. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: spin–orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009).

    Google Scholar 

  24. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    CAS  Google Scholar 

  25. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    CAS  Google Scholar 

  26. Yafet, Y. in Solid State Physics Vol. 14 (eds Seitz, F. & Turnbull, D.) 1 (Academic, 1963).

    Google Scholar 

  27. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Google Scholar 

  28. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Google Scholar 

  29. Cho, S., Chen, Y. F. & Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007).

    Google Scholar 

  30. Nishioka, M. & Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 90, 252505 (2007).

    Google Scholar 

  31. Ohishi, M. et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, L605–L607 (2007).

    CAS  Google Scholar 

  32. Wang, W. H. et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402 (2008).

    Google Scholar 

  33. J'ozsa, C. et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403(R) (2009).

    Google Scholar 

  34. Tombros, N. et al. Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 101, 046601 (2008).

    CAS  Google Scholar 

  35. Castro-Neto, A. H. & Guinea, F. Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009).

    CAS  Google Scholar 

  36. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 103, 146801 (2009).

    CAS  Google Scholar 

  37. Ertler, C., Konschuh, S., Gmitra, M. & Fabian, J. Electron spin relaxation in graphene: the role of the substrate. Phys. Rev. B 80, 041405(R) (2009).

    Google Scholar 

  38. Ochoa, H., Castro-Neto, A. H. & Guinea, F. Elliot–Yafet mechanism in graphene. Preprint at http://arxiv.org/abs/1107.3386 (2011).

  39. Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Google Scholar 

  40. Han, W. & Kawakami, R. K. Spin relaxation in single-layer and bilayer graphene. Phys. Rev. Lett. 107, 0472074 (2011).

    Google Scholar 

  41. Yang, T-Y. et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett. 107, 047206 (2011).

    Google Scholar 

  42. Dyakonov, M. I. & Perel, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1971).

    Google Scholar 

  43. Jo, S., Ki, D-K., Jeong, D., Lee, H-J. & Kettemann, S. Spin relaxation properties in graphene due to its linear dispersion. Phys. Rev. B 84, 075453 (2011).

    Google Scholar 

  44. Ma, D., Li, Z. & Yang, Z. Strong spin–orbit splitting in graphene with adsorbed Au atoms. Carbon 50, 297–305 (2012).

    CAS  Google Scholar 

  45. Varykhalov, A. et al. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 101, 157601 (2008).

    CAS  Google Scholar 

  46. Rader, O. et al. Is there a Rashba effect in graphene on 3D ferromagnets? Phys. Rev. Lett. 102, 057602 (2009).

    CAS  Google Scholar 

  47. Qiao, Z. et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B 82, 161414(R) (2010).

    Google Scholar 

  48. Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

    Google Scholar 

  49. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    CAS  Google Scholar 

  50. Teo, J. C. Y., Fu, L. & Kane, C. L Surface states and topological invariants in three-dimensional topological insulators: application to Bi1– xSbx . Phys. Rev. B 78, 045426 (2008).

    Google Scholar 

  51. Culcer, D., Hwang, E. H., Stanescu, T. D. & Das Sarma, S. Two-dimensional surface charge transport in topological insulators. Phys. Rev. B 82, 155457 (2010).

    Google Scholar 

  52. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Google Scholar 

  53. Dyakonov, M. I. & Khaetskii, A. V. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) Ch. 3 (Springer, 2008).

    Google Scholar 

  54. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    CAS  Google Scholar 

  55. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Google Scholar 

  56. Inoue, J. I., Bauer, G. E. W. & Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 70, 41303(R) (2004).

    Google Scholar 

  57. Mishchenko, E. G., Shytov, A. V. & Halperin, B. I. Spin current and polarization in impure two-dimensional electron systems with spin–orbit coupling. Phys. Rev. Lett. 93, 226602 (2004).

    CAS  Google Scholar 

  58. Khaetskii, A. Nonexistence of intrinsic spin currents. Phys. Rev. Lett. 96, 056602 (2006).

    Google Scholar 

  59. Raimondi, R. & Schwab, P. Spin-Hall effect in a disordered two-dimensional electron system. Phys. Rev. B 71, 33311 (2005).

    Google Scholar 

  60. Dimitrova, O. V. Spin-Hall conductivity in a two-dimensional Rashba electron gas. Phys. Rev. B 71, 245327 (2005).

    Google Scholar 

  61. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Google Scholar 

  62. Silvestrov, P. G. & Mishchenko, E. G. Spin-Hall effect in chiral electron systems: from semiconductor heterostructures to topological insulators. Preprint at http://arxiv.org/abs/0912.4658 (2009).

  63. Gao, J-H., Yuan, J., Chen, W-Q., Zhou, Y. & Zhang, F-C. Giant mesoscopic spin Hall effect on the surface of topological insulator. Phys. Rev. Lett. 106, 057205 (2011).

    Google Scholar 

  64. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Google Scholar 

  65. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Google Scholar 

  66. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Google Scholar 

  67. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    CAS  Google Scholar 

  68. Engel, H-A. Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane electric and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007).

    Google Scholar 

  69. Zhuzin, A. A. & Burkov, A. A. Thin topological insulator film in a perpendicular magnetic field. Phys. Rev. B 83, 195413 (2011).

    Google Scholar 

  70. Tse, W-K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Google Scholar 

  71. Sinitsyn, N. A., MacDonald, A. H., Jungwirth, T., Dugaev, V. K. & Sinova, J. Anomalous Hall effect in 2D Dirac band: link between Kubo–Streda formula and semiclassical Boltzmann equation approach. Phys. Rev. B 75, 045315 (2007).

    Google Scholar 

  72. Culcer, D. & Das Sarma, S. Anomalous Hall response of topological insulators. Phys. Rev. B 83, 245441 (2011).

    Google Scholar 

  73. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Google Scholar 

  74. Qi, X-L., Li, R., Zang, J. & Zhang, S-C. Inducing a magnetic monopole with topological surface states. Science 27, 1184–1187 (2009).

    Google Scholar 

  75. Qi, X-L., Hughes, T. L. & Zhang, S-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Google Scholar 

  76. Tse, W-K. & MacDonald, A. H. Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields. Phys. Rev. B 82, 161104(R) (2010).

    Google Scholar 

  77. Sushkov, A. B. et al. Far-infrared cyclotron resonance and Faraday effect in Bi2Se3 . Phys. Rev. B 82, 125110 (2010).

    Google Scholar 

  78. Jenkins, G. S. et al. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3 . Phys. Rev. B 82, 125120 (2010).

    Google Scholar 

  79. Valdes Aguilar, R. et al. THz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3 . Preprint at http://arxiv.org/abs/1105.0237v3 (2011).

  80. Hancock, J. N. et al. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Phys. Rev. Lett. 107, 136803 (2011).

    Google Scholar 

  81. Maciejko, J., Qi, X-L., Drew, H. D. & Zhang, S-C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

    Google Scholar 

  82. Tkachov, G. & Hankiewicz, E. M. Anomalous galvanomagnetism, cyclotron resonance, and microwave spectroscopy of topological insulators. Phys. Rev. B 84, 035405 (2011).

    Google Scholar 

  83. Garate, I. & Franz, M. Inverse spin-galvanic effect in a topological-insulator/ferromagnet interface. Phys. Rev. Lett. 104, 146802 (2010).

    Google Scholar 

  84. Wray, L. A. et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nature Phys. 7, 32–37 (2011).

    CAS  Google Scholar 

  85. Vobornik, I. et al. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 11, 4079–4082 (2011).

    CAS  Google Scholar 

  86. Liu, Q., Liu, C-X., Xu, C., Qi, X-L. & Zhang, S-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Google Scholar 

  87. Garate, I. & Franz, M. Magnetoelectric response of the time-reversal invariant helical metal. Phys. Rev. B 81, 172408 (2010).

    Google Scholar 

  88. Hong, X., Cheng, S-H., Herding, C. & Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 83, 085410 (2011).

    Google Scholar 

  89. Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199–202 (2012).

    CAS  Google Scholar 

  90. McCann, E. & Fal'ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Google Scholar 

  91. Xia, F., Farmer, D. B., Lin, Y-m. & Avouris, P. Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    CAS  Google Scholar 

  92. Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 7, 948–952 (2011).

    CAS  Google Scholar 

  93. Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer. Preprint at http://arxiv.org/abs/1108.1609 (2011).

  94. San-Jose, P., Prada, E., McCann, E. & Schomerus, H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).

    CAS  Google Scholar 

  95. Craciun, M. F., Russo, S., Yamamoto, M. & Tarucha, S. Tuneable electronic properties in grapheme. Nano Today 6, 42–60 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the US Army Research Office (ARO) under award number MURI W911NF-08-1-0364. We thank D. Abanin, I. Grigorieva, J. Sinova, A. Veligura and B. van Wees for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. MacDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesin, D., MacDonald, A. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater 11, 409–416 (2012). https://doi.org/10.1038/nmat3305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing