Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations

Abstract

The interplay among charge, spin and lattice degrees of freedom in solids gives rise to intriguing macroscopic quantum phenomena such as colossal magnetoresistance, multiferroicity and high-temperature superconductivity1,2,3. Strong coupling or competition between various orders in these systems presents the key to manipulate their functional properties by means of external perturbations such as electric and magnetic fields2 or pressure3. Ultrashort and intense optical pulses have emerged as an interesting tool to investigate elementary dynamics and control material properties by melting an existing order4,5,6. Here, we employ few-cycle multi-terahertz pulses to resonantly probe the evolution of the spin-density-wave (SDW) gap of the pnictide compound BaFe2As2 following excitation with a femtosecond optical pulse. When starting in the low-temperature ground state, optical excitation results in a melting of the SDW order, followed by ultrafast recovery. In contrast, the SDW gap is induced when we excite the normal state above the transition temperature. Very surprisingly, the transient ordering quasi-adiabatically follows a coherent lattice oscillation at a frequency as high as 5.5 THz. Our results attest to a pronounced spin–phonon coupling in pnictides that supports rapid development of a macroscopic order on small vibrational displacement even without breaking the symmetry of the crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photo-induced transient changes of the MIR conductivity in the SDW state.
Figure 2: Photo-induced transient changes of the MIR conductivity in the normal state slightly above TSDW.
Figure 3: Schematic visualization of the A1g vibration and its effect on the band structure.
Figure 4: Temperature dependence of the relative modulation amplitude due to the coherent phonon at 5.5 THz.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  2. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  3. Kimber, S. A. J. et al. Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2 . Nature Mater. 8, 471–475 (2009).

    Article  CAS  Google Scholar 

  4. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  5. Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).

    Article  CAS  Google Scholar 

  6. Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).

    Article  CAS  Google Scholar 

  7. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  8. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  9. Zhao, J. et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

    Article  CAS  Google Scholar 

  10. De la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  11. Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    Article  CAS  Google Scholar 

  12. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    Article  CAS  Google Scholar 

  13. Drew, A. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation. Nature Mater. 8, 310–314 (2009).

    Article  CAS  Google Scholar 

  14. Marsik, P. et al. Coexistence and competition of magnetism and superconductivity on the nanometer scale in underdoped BaFe1.89Co0.11As2 . Phys. Rev. Lett. 105, 057001 (2010).

    Article  CAS  Google Scholar 

  15. Pashkin, A. et al. Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7−δ studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105, 067001 (2010).

    Article  CAS  Google Scholar 

  16. Hardy, F. et al. Calorimetric evidence of multiband superconductivity in Ba(Fe0.925Co0.075)2As2 single crystals. Phys. Rev. B 81, 060501(R) (2010).

    Article  Google Scholar 

  17. Bernhard, C., Humlícek, J. & Keimer, B. Far-infrared ellipsometry using a synchrotron light source—the dielectric response of the cuprate high Tc superconductors. Thin Solid Films 455–456, 143–149 (2004).

    Article  Google Scholar 

  18. Hu, W. Z. et al. Origin of the spin density wave instability in AFe2As2 (A=Ba, Sr) as revealed by optical spectroscopy. Phys. Rev. Lett. 101, 257005 (2008).

    Article  CAS  Google Scholar 

  19. Rahlenbeck, M. et al. Phonon anomalies in pure and underdoped R1−xKxFe2As2 (R=Ba, Sr) investigated by Raman light scattering. Phys. Rev. B 80, 064509 (2009).

    Article  Google Scholar 

  20. Mansart, B. et al. Ultrafast transient response and electron–phonon coupling in the iron-pnictide superconductor Ba(Fe1−xCox)2As2 . Phys. Rev. B 82, 024513 (2010).

    Article  Google Scholar 

  21. Rettig, L. et al. Ultrafast momentum-dependent response of electrons in antiferromagnetic EuFe2As2 driven by optical excitation. Phys. Rev. Lett. 108, 097002 (2012).

    Article  CAS  Google Scholar 

  22. Yildirim, T. Frustrated magnetic interactions, giant magneto–elastic coupling, and magnetic phonons in iron-pnictides. Physica C 469, 425–441 (2009).

    Article  CAS  Google Scholar 

  23. Mizuguchi, Y. et al. Anion height dependence of Tc for the Fe-based superconductor. Supercond. Sci. Technol. 23, 054013 (2010).

    Article  Google Scholar 

  24. Yndurain, F. Coupling of magnetic moments with phonons and electron–phonon interaction in LaFeAsO1−xFx . Europhys. Lett. 94, 37001 (2011).

    Article  Google Scholar 

  25. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  CAS  Google Scholar 

  26. Grüner, G. The dynamics of spin-density waves. Rev. Mod. Phys. 66, 1–24 (1994).

    Article  Google Scholar 

  27. Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002).

    Article  Google Scholar 

  28. Huang, Q. et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 101, 257003 (2008).

    Article  CAS  Google Scholar 

  29. Rotter, M., Tegel, M. & Johrendt, D. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 . Phys. Rev. B 78, 020503(R) (2008).

    Article  Google Scholar 

  30. Stojchevska, L. et al. Electron–phonon coupling and the charge gap of spin-density wave iron-pnictide materials from quasiparticle relaxation dynamics. Phys. Rev. B 82, 012505 (2010).

    Article  Google Scholar 

  31. Chu, J-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  CAS  Google Scholar 

  32. Diallo, S. O. et al. Paramagnetic spin correlations in CaFe2As2 single crystals. Phys. Rev. B 81, 214407 (2010).

    Article  Google Scholar 

  33. Boeri, L., Dolgov, O. V. & Golubov, A. A. Is LaFeAsO1−xFx an electron–phonon superconductor? Phys. Rev. Lett. 101, 026403 (2008).

    Article  CAS  Google Scholar 

  34. Liu, R. H. et al. A large iron isotope effect in SmFeAsO1−xFx and Ba1−xKxFe2As2 . Nature 459, 64–67 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Schweizer Nationalfonds (SNF) under Grants No. PA00P2_129091 and No. 200020-129484, by Deutsche Forschungsgemeinschaft through the Emmy Noether Program and SPP 1458, and by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.W.K., J.D., R.H. and A.L. planned the project; K.W.K. performed ellipsometry measurements; K.W.K., A.P. and M.P. performed terahertz measurements; H.S. and M.B. performed NIR/visible region measurements; K.W.K., A.P., H.S. and M.B. analysed data; T.W. grew samples; and K.W.K., A.P., C.B., J.D., R.H. and A.L. wrote the paper. All authors contributed to discussions and gave comments on the manuscript.

Corresponding authors

Correspondence to K. W. Kim or R. Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Pashkin, A., Schäfer, H. et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nature Mater 11, 497–501 (2012). https://doi.org/10.1038/nmat3294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing